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Abstract13

The biological productivity and diversity of the California Current System (CCS) is at14

the leading edge of major emerging climate trends, including hypoxia and acidification. We15

present results from a hindcast simulation (reanalysis) of an eddy-resolving oceanic physical-16

biogeochemical model of the CCS, to characterize its mean state and its patterns and drivers17

of variability in marine biogeochemical and ecosystem processes from 1995-2010. This is a18

companion paper to a physical analysis in Renault et al. (2021). The model reproduces long-19

term mean distributions of key ecosystem metrics, including surface nutrients and productivity20

and subsurface O2 and carbonate undersaturation. The spatial patterns of Net Primary Produc-21

tivity (NPP) are broadly consistent with measured and remotely sensed rates, and they reflect22

a predominant limitation by nitrogen, with seasonal and episodic limitation by Fe nearshore23

in the central CCS, and in the open ocean northern CCS. The vertical distribution of NPP is24

governed by the trade-off between nutrient and light limitation, a balance that reproduces and25

explains the observed spatial variations in the depth of the deep Chl maximum. The seasonal26

to interannual variability of biogeochemical properties and rates is also well captured by model27

simulations. Because of the prevailing nutrient limitation, fluctuations in the depth of the pyc-28

nocline and associated nutricline are the leading single factor explaining interannual variability29

in the interior biogeochemical state, and the relationships between density and biogeochemical30

rates and tracers are consistent between model and observations. The magnitude and relation-31

ship between density structure and biogeochemical processes is illustrated by the 1997-98 El32

Niño event, which faithfully reproduces the single largest deviation from the mean state in the33

simulated period. A slower decadal shoaling of the pycnocline also accounts for the concomi-34

tant trends in hypoxic and corrosive conditions on the shelf. The resulting variability is key to35

understanding the vulnerability of marine species to oceanic change, and to the detection of36

such changes, soon projected to exceed the range of conditions in the past century.37
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1 Introduction38

Coastal upwelling systems along the eastern boundaries of the subtropical oceanic basins are some39

of the most climatically and biologically dynamic regions of the world’s oceans (Carr and Kearns,40

2003; Kudela et al., 2008). In the California Current System (CCS) of the Eastern North Pacific,41

the seasonal cycle of alongshore winds and offshore surface currents yields a direct conduit for42

nutrient-rich water to rise from the deep ocean to the sunlit surface (Chavez and Messie, 2009).43

The upwelling of cold water near the coast is evidenced in satellite remote sensing of sea sur-44

face temperature, expansive offshore marine stratocumulus clouds, and a nearshore ribbon of high45

chlorophyll from phytoplankton. The resulting cascade of phytoplankton biomass up the food46

chain supports high biodiversity and productive fisheries (FAO, 2009).47

The physical state of the Northeastern Pacific varies on time scales of days to decades. This48

variability includes mesoscale eddies, seasonal cycle, interannual El Niño Southern Oscillation49

(ENSO) variability, and lower frequency climate fluctuations characterized by the Pacific Decadal50

Oscillation (PDO, Mantua et al. (1997)) and the North Pacific Gyre Oscillation (NPGO, Di Lorenzo51

et al. (2008)). Ecosystems throughout the Eastern Pacific respond strongly to physical forcing at52

each of these timescales, through the physical influence of winds, light, and heat, and their effects53

on the supply of nutrients to phytoplankton and oxygen to marine animals. Interannual climate54

cycles associated with ENSO in particular are major perturbations to these parameters and thus to55

plankton productivity (Chavez et al., 2002; Bograd and Lynn, 2001; Turi et al., 2018). Because56

thermocline waters entering the CCS are, like other subtropical Eastern Boundary Upwelling Sys-57

tems, far from the sites of atmospheric ventilation in the west, the rising waters are “old” and bear58

the signature of decades of biogeochemical process that yield low O2, high nutrients, and low pH.59

The upwelling in eastern boundary systems also generates energetic mesoscale eddy fields (Capet60

et al., 2008). These eddies can transport the extreme properties of CCS thermocline waters far off-61

shore and down into the subtropical interior, connecting the biogeochemistry of the coastal CCS62

with the adjacent oceanic gyres (Nagai et al., 2015; Gruber et al., 2011; Renault et al., 2016a;63

Frenger et al., 2018).64

Oceanic acidification and deoxygenation are also emerging trends in the CCS ecosystem (Gru-65

ber et al., 2012; Chan et al., 2008). Anthropogenic CO2 has been detected in coastal subsurface66

waters off Northern California (Feely et al., 2008). Decadal trends in oxygen have also been ob-67

served in the California Current (McClatchie et al., 2010; Pierce et al., 2012; Dussin et al., 2019)68

and have altered the proportions of biologically important nutrients (Deutsch et al., 2011). In the69

Northern California Current, massive benthic die-offs have been attributed to episodes of extreme70

hypoxia along the Oregon shelf (Chan et al., 2008). Fluctuating abundance of species in upper71

trophic levels observed over decadal and longer time scales arise from climate variability, but the72

specific mechanisms remain obscure (Chavez et al., 2003; Rykaczewski and Checkley, 2008). In73

addition to climate forcing, the coastal ocean is subjected to anthropogenic pollution that could74

locally exacerbate hypoxia and acidification (Doney et al., 2007), and may contribute to the in-75

creasing frequency and toxicity of harmful algal blooms along California’s coast (Andersson et al.,76

2008).77

The continental margin of western North America has a rich endowment of historical and on-78

going observational programs aiding evaluation of climate-ecosystem interactions, including one79

of the most extensive time series programs (the California Cooperative Ocean Fisheries Investi-80

gations, CalCOFI) anywhere in the world’s oceans (Ducklow et al., 2009). The age of shallow81
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thermocline waters also make them prone to large amplitudes of low-frequency variability (Ito and82

Deutsch, 2010) that confound the detection of climate and other anthropogenic changes imping-83

ing through the oceanic surface. Thus, even in this relatively well-studied region of the ocean,84

it is difficult to distinguish long-term trends associated with anthropogenic climate change from85

the low-frequency variability that pervades oceanic properties in regions of close contact with old,86

deep waters. For example, it remains unclear whether the changes in hypoxia in the California Cur-87

rent are driven by internal climate variability, or are an early sign of long-term climate warming88

(McClatchie et al., 2010; Pierce et al., 2012; Long et al., 2016).89

Models of this dynamic region often exhibit substantial biases in the mean state and unknown90

fidelity in representing historical variability and its causal mechanisms. The purpose of this pa-91

per is to report a system-wide validation of eddy-resolving, regional model fields and property92

relationships through comparison to a variety of hydrographic, experimental, and remote sensing93

observations. Here we focus on biogeochemical aspects of the model solution; the physical dy-94

namics and its model validation are discussed in a companion paper (Renault et al., 2021). In this95

work, we demonstrate the fidelity of modeled spatial patterns and seasonal to interannual variabil-96

ity to observational datasets. We further probe the mechanisms underlying this variability–better97

understanding these drivers is critical to attributing and projecting the biogeochemical responses of98

the CCS to natural climate fluctuations and anthropogenic change. Section 2 provides a description99

of the model, its boundary conditions, the simulations performed, and the datasets used for model100

evaluation. These constitute the core results described in Section 3 and summarized in the final101

Section 4.102

2 Methods103

2.1 Model description104

The ecosystem and biogeochemical cycles are simulated in the Regional Ocean Modeling Sys-105

tem (ROMS, Shchepetkin and McWilliams (2005)). As in Renault et al. (2016b), the primary106

domain extends from 144.7◦W to 112.5◦W and from 22.7◦N to 51.1◦N. Its grid is 437 x 662107

points with a horizontal resolution of dx = 4 km and 60 vertical levels. Initial and horizontal108

boundary data for temperature, salinity, surface elevation, and horizontal velocity are taken from109

the quarter-degree, daily-averaged Mercator Glorys2V3 data-assimilating ocean reanalysis (acces-110

sible via http://www.myocean.eu; described further at https://www.mercator-ocean.fr/en/science-111

publications/glorys/). In order to maintain a realistic representation of the variability in water mass112

properties and transport into the model domain over time, monthly anomalies from the Mercator113

data are added to the mean monthly climatology from the World Ocean Atlas (WOA, Locarnini114

et al. (2013); Zweng et al. (2013)) over the period 1995-2004. The freshwater, turbulent heat,115

and momentum fluxes are estimated using bulk formulae (Large, 2006) and the atmospheric fields116

derived from an uncoupled simulation with the Weather Research and Forecasting model (WRF).117

Heat and momentum fluxes are computed from bulk formulae, as detailed in Renault et al. (2021).118

The freshwater flux from river runoff is included as surface precipitation and is spread using a119

Gaussian distribution over the grid cells that fall within the range from the coast to 150 km off-120

shore; this excludes a detailed representation of river plumes. The river-runoff forcing dataset we121

use is a monthly climatology from Dai et al. (2009). The river inputs are assumed to carry negli-122
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gible chemical concentrations, except the outflow from the Juan de Fuca Strait (see below). This123

statistically equilibrated solution, named USW4, is integrated over the period 1995-2010 after a124

spin up of 1 year (with initial conditions derived from the World Ocean Atlas).125

Further details are described in the companion paper (Renault et al., 2021).126

The coastal biogeochemical dynamics are simulated using an ecosystem model (the Biogeo-127

chemical Elemental Cycling (BEC) model, Fig. 1 and Appendix). This model includes both phy-128

toplankton and zooplankton, and dissolved, suspended, and sinking particulates (Moore et al.,129

2004). The model includes four phytoplankton functional groups (picoplankton, diatoms, coc-130

colithophores, and diazotrophs) characterized by distinct biogeochemical functions (nutrient re-131

cycling, silicification, calcification, and N2 fixation, respectively). Four nutrient cycles (nitrogen,132

silicic acid, phosphate, and iron) are simulated and are coupled through a fixed phytoplankton sto-133

ichiometry, except for iron (Fe), which varies in proportion to the other nutrients (see Equations134

A100-109; Moore et al. (2002, 2004)). The ecosystem is linked to an oceanic biogeochemistry135

module that includes total inorganic carbon (DIC), alkalinity, iron, and dissolved O2. Reminer-136

alization of sinking organic matter is parameterized according to the mineral ballast model of137

Armstrong et al. (2001). Gas exchange fluxes for O2 and CO2 are based on Wanninkhof (1992).138

The BEC equations are listed in the Appendix, and the model code, including parameter settings,139

are available through the GitHub repository (see the remark at the end of the paper).140

Figure 1: Schematic structure and physical configuration of ROMS-BEC biogeochemical model.
(a) The main ecosystem state variables and fluxes. (b) Geographic scale of simulation, and sources
of surface forcing, open boundary condition data and representations of benthic nutrient fluxes.

The iron Fe cycle includes dissolved iron, scavenged iron, and iron associated with organic141

matter pools and dust particles, but only dissolved iron and organically bound iron are explic-142

itly modeled as state variables. For dissolved iron, four processes are considered: atmospheric143

deposition, biological uptake and remineralization, scavenging by sinking particles, and release144

by sediments. Atmospheric iron deposition is based on the dust climatology of Mahowald et al.145

(2006). We implemented a sedimentary iron source based on benthic flux chamber measurements146

in the California margin. An equation relating sediment Fe release as a function of bottom water147

O2 (log10[Ffe] = 2.5 - 0.0165 · O2, where O2 is in mmol m−3 and the efflux units are µ mol m−2
148
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d−1) is derived from data compiled by Severmann et al. (2010). The resulting rates of Fe sup-149

ply from sediments (Fig. 2) exceed those from atmospheric dust deposition throughout the model150

domain.151

We also added an anoxic nitrogen cycle, with losses to the sediments and water column. Bot-152

tom water nitrate is removed using a statistical description of sediment denitrification proposed by153

Middelburg et al. (1996), based on a vertically resolved diagenetic model that predicts the primary154

dependence of benthic denitrification to be on organic carbon sedimentation rate, with a secondary155

sensitivity to bottom water oxygen concentration. This statistical description of the complete di-156

agenetic model reproduces basic controls on observed sediment fluxes, without the considerable157

computational cost of a sedimentary submodel. The predicted rates of NO−3 loss from this sedi-158

mentary sink (Fig. 2) amount to a small loss of ≈ 3 ×1012 gN yr−1. Denitrification in the water159

column is also modeled, but its integrated removal rate is an order of magnitude smaller than sed-160

imentary losses, and has negligible impact on the results because O2 in the model domain rarely161

falls below the threshold (5 mmol m−3) assumed for this process. The higher O2 thresholds as-162

sociated with anaerobic particle micro-environments could increase the importance of anaerobic163

processes in the CCS, but they are not represented in this model (Bianchi et al., 2018). The removal164

of NO−3 by denitrification also acts as a sink for alkalinity.165

Figure 2: Parameterized fluxes of iron and nitrate between the water column and sediments. (a)
The Fe efflux (in mmol m−2 yr−1) to the water column from the sediments. (b) The NO−3 flux
from the water column to the sediments due to net denitrification in sedimentary pore waters.
Both fluxes are parameterized as a function of bottom water O2, and denitrification is additionally
parameterized as a function of organic matter flux to the seafloor. These maps are therefore part of
the model solutions, and not prescribed forcings.
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2.2 Biogeochemical forcing and validation data166

The biogeochemical model components and the physical (Renault et al., 2021) and biogeochemical167

forcings are schematically represented in Fig. 1. The biogeochemical boundary conditions for168

nutrients (NO−3 , PO3−
4 , Si(OH)4) and O2 are taken from monthly climatological observations169

in the 2013 World Ocean Atlas (WOA) (Garcia-Reyes et al., 2014). Additionally, lateral NO−3170

fluxes derived from prior model simulations (Davis et al., 2014) of nutrient exchange between the171

Strait of Juan de Fuca and the coastal ocean were imposed as landward boundary conditions in172

the Northern CCS. Non-nitrogenous nutrients were not available for inclusion in fluxes from the173

Strait of Juan de Fuca. However, we imposed an Fe concentration at this boundary by scaling it174

to nitrate. The scaling factor (Fe=NO−3 *3e-5) was chosen to be similar to that of the surrounding175

coastal water. This ensures that Juan de Fuca nutrient inputs will not alter the locally limiting176

nutrient, absent data to support such an alteration. Boundary condition data for Fe is taken from177

global simulations with the Community Earth System Model (CESM) that used an earlier version178

of the same BEC ecosystem model. The NH+
4 boundary concentrations, being small in nature,179

are set to zero, but adjust rapidly to the ecosystem processes in the interior of the domain. Time-180

dependent carbon cycle parameters, DIC and Alk, are taken from GLODAP (Key et al., 2004), with181

a reference year of 1995. An imposed trend at the boundary scales the anthropogenic component of182

DIC in proportion to the rise of atmospheric CO2 since 1995. Time-dependent atmospheric pCO2183

is also used as a surface boundary condition for air-sea gas exchange. Aside from the boundary184

carbonate system parameters, the only non-stationary forcing of the model solution comes from185

the physical boundary conditions and surface forcing (Renault et al., 2021).186

In order to ensure the integrity of tracer relationships along isopycnal surfaces, we map the187

biogeochemical boundary conditions from source data to the model grid using density rather than188

depth as the vertical coordinate, while retaining the mean-seasonal values of T and S (hence den-189

sity) along the boundary as specified in the physical conditions (Renault et al., 2021). This prevents190

any errors in the depth of isopycnal surfaces inherited from the physical boundary data (Merca-191

tor) from biasing the biogeochemical properties along that surface. Concurrently, this results in192

biogeochemical boundary conditions responding to interannual variability in isopycnal depth, de-193

spite being climatologically fixed along isopycnal surfaces at the boundary. Thus interannual bio-194

geochemical variability is propagated into the model domain because of the covariance between195

property isopleths and isopycnal displacements rather than changing biogeochemical water mass196

properties on density surfaces. However, biogeochemical variability along isopycnal surfaces in197

the interior domain can still arise from varying the proportions (mixture) of water masses enter-198

ing from different boundaries, or from time variable rates of biogeochemical transformation on199

isopycnals in the model interior.200

The CCS is among the best-sampled regions of the world’s oceans. Hydrographic sampling201

and biological rate measurements have been conducted repeatedly if not routinely along several202

sections off the West coast, most notably in the CalCOFI sampling area in the Southern Califor-203

nia Bight, off Monterey Bay, California, off Newport, Oregon, and Line P off Victoria, British204

Columbia at the northern edge of the 4 km model domain. Despite the abundant datasets from this205

region, data density is still sparse for much of the central California coast and for many biogeo-206

chemical properties of interest (e.g., Fe). The total number of profiles in the 2013 World Ocean207

Database (WOD; downloaded from https://www.nodc.noaa.gov/OC5/WOD13/ and including the208

hydrographic line data) are plotted for NO−3 and O2 over the entire historical data period (1955-209
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2013; Fig. 3).210

To facilitate comparison of model outputs to data, and particularly seasonal cycles, we de-211

fined 6 regions (Fig. 3), dividing the CCS by distance from the coast into nearshore (0-100 km)212

and offshore (100-500 km) regions, and by latitude into the Northern, Central and Southern CCS.213

These designations are somewhat arbitrary, but are based on a combination of topographic delin-214

eations and to ensure adequate data coverage in each region. We focus our validation efforts on215

broad-scale measures that can be evaluated from climatological databases, namely WOD and its216

objectively-mapped climatological representation, the World Ocean Atlas (WOA; Garcia-Reyes217

et al. (2014)). We further evaluate the vertical and cross-shelf structure of biogeochemical vari-218

ables at greater resolution at the hydrographic line locations. Higher frequency biogeochemical219

measurements from moorings are generally available only for more recent periods, and primarily220

from nearshore environments. Model comparison to mooring data is left for planned downscaling221

of these simulations better suited to examining high-frequency variability.222

Figure 3: Hydrographic data density used for model validation. Observations in the World Ocean
Database are binned in a regular 1o latitude/longitude grid for each month over the entire historical
data period (1955-2013). Total number of months with a profile are shown for NO−3 (left) and
O2 (right). Nominal station locations for major repeat hydrographic lines used for validation (see
Fig. 16) are shown (red circles), along with the boundaries (black lines) used for regional time
series comparisons in Figs. 6, 7, 14, and 21.
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3 Results223

We describe the spatial patterns and temporal variability of model biogeochemical solutions and224

their fidelity to observational datasets. Of the numerous properties and rates of the biogeochemical225

system that are predicted by the model, we focus on those that are most important to ecosystem226

primary productivity and the overall elemental cycling of carbon, nitrogen, and oxygen, and are227

best observed over scales captured by the model. This analysis begins with the photic zone, with228

particular emphasis on the factors driving NPP variability at multiple scales of space and time.229

We also evaluate the export of this productivity to depth. Second, we present results from the230

ocean thermocline, where the respiration of exported surface productivity contributes to hypoxic231

and corrosive conditions. Aspects of the model solution that are not presented include nutrients232

that are not limiting, rates that lack large-scale and climatological datasets, and variability that is233

poorly resolved by a dx = 4 km model (e.g., submesoscale and nearshore phenomena).234

3.1 Photic Zone235

3.1.1 Chlorophyll and Net Primary Production236

We begin with an evaluation of model distributions of Chlorophyll-a (hereafter Chl), and Net237

Primary Productivity (NPP), both of which can be estimated from remote sensing of ocean color.238

While NPP is of greater biological significance, its estimation is less direct than for Chl.239

The model Chl concentrations are governed by the product of biomass and the C : Chl ratios.240

Biomass is subject to advection and to ecosystem transformations (see Appendix). The C : Chl241

ratio is determined by photoacclimation, or the amounts of light-harvesting pigments and photo-242

protective compounds produced by phytoplankton in response to their growth environment. This243

process is included in the ROMS-BEC representation of phytoplankton physiology following the244

model of Geider et al. (1998), which relates changes in chlorophyll synthesis and nutrient uptake245

in response to changing PAR. The dominant patterns of Chl are also found in biomass (see be-246

low), indicating that photoacclimation is not the leading factor in Chl variability. While biomass247

may be a more ecologically meaningful comparison, we validated model solutions using Chl be-248

cause it is more directly estimated from ocean color sensing. The frequency distribution of Chl in249

both ROMS and SeaWIFS remote sensing data is approximately log-normal and is mapped after250

logarithmic transformation.251

The annual mean concentrations of Chl vary most strongly in the cross-shore direction, with252

relatively weak alongshore gradients, a well-known pattern in observations (Banas and Hickey,253

2008) that is well represented by the model (Fig. 4a,b). The offshore drop-off in Chl is somewhat254

weaker in model simulations, resulting in a wider band of high coastal Chl, a tendency that is255

not reflected in NPP (discussed immediately below). Kessouri et al. (2020) shows that there is256

some sensitivity in these distributions to model resolution, with higher resolution increasing the257

nearshore biomass and productivity. The leading pattern of variability in climatological Chl is258

characterized by a seasonal cycle that is also largely synchronous along the coast.259
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Figure 4: Mean annual Chlorophyll (Chl) and its seasonal cycle. Mean annual concentrations
(upper panels) are shown in mg m−3 averaged over the simulation period in both model output
and SeaWiFS remote sensing level 3 product. The seasonal cycle is shown as the spatial loading
patterns (middle panels) and time series (bottom panel) of the first EOF of climatological values of
log 10[Chl]. In both the mean annual and seasonal variations of Chl, the dominant variations are
cross-shore and at Point Conception, which separates the central CCS from the SCB. High coastal
Chl extends further offshore in model solutions than in observations, a bias that is not found in
productivity (Fig. 5).
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The leading Empirical Orthogonal Function (EOF) (Fig. 4c,d,e), has Chl reaching peak values260

in late summer, and it accounts for the large majority of the climatological variance in both ob-261

servations (EOF1=64% variance) and model solutions (EOF1 = 69% variance). The second EOF262

(not shown) also has a similar loading pattern, but with more meridional structure offshore and a263

minimum in spring–this accounts for only ≈13% and 19% of the variance in observations and the264

model, respectively. The seasonality of Chl reveals anti-phased cycles between nearshore high-265

Chl band and the lower Chl offshore. While near-shore Chl peaks in late summer, the offshore266

surface Chl has a minimum. This pattern is not found in the EOFs of depth-integrated NPP, indi-267

cating that the dipole structure of the Chl pattern results from a vertical redistribution of Chl to268

greater depths in offshore waters as they become more oligotrophic due to nutrient uptake during269

summer months. This interpretation is confirmed in the analysis of the vertical Chl maximum270

(Sec. 3.1.2).271

In BEC, NPP depends on the sum of j model phytoplankton biomasses (Bj), their maximum272

growth rates (µmax(T ) = µ0 T
1.06), and the limitation of those rates by light (0 ≤ γj(I) ≤ 1)273

and the minimum Michaelis-Menten function λi,j (0 ≤ λi,j(Ni) ≤ 1) among the i nutrients with274

half-saturation Ki,j (0 ≤ λi,j(Ni) ≤ 1), written as:275

NPP = Σi,j µmax j(T ) γj(I) min[λi,j(Ni) ]Bj . (1)

The spatial patterns of modeled NPP fall within the range of satellite-derived estimates (Fig. 5).276

The two commonly used satellite-based algorithms are the vertically generalized production model277

(VGPM) (Behrenfeld and Falkowski, 1997) and the carbon-based productivity model (CbPM)278

(Westberry et al., 2008). The VGPM estimates productivity on the basis of light and chlorophyll279

concentrations, calibrated to a predominantly coastal radiocarbon incubation dataset. The CbPM280

additionally incorporates phytoplankton backscattering and growth rate relationships in order to es-281

timate productivity as a function of phytoplankton biomass, and it is calibrated to subtropical gyre282

radiocarbon incubations. The two algorithms exhibit a relatively wide range for the CCS region,283

reflecting the considerable uncertainty in “empirical” NPP estimates as well as differences in the284

measurements underlying each. The VGPM algorithm has a larger offshore gradient, with higher285

coastal values, and lower values in the open ocean, compared to the carbon-based CbPM. NPP286

rates from ROMS-BEC fall between the two remote sensing products, but are generally closer287

to the values of the VGPM algorithm, supporting higher near-shore rates, lower offshore rates,288

and increased seasonality relative to the CbPM. The VGPM has been explicitly calibrated against289

radiocarbon bottle incubations from the CalCOFI program, and it is therefore likely to be more ac-290

curate in this region (Kahru et al., 2009). Indeed, we find that ROMS-BEC rates and distributions291

of productivity are also consistent with direct estimates from ship-based data both from CalCOFI292

(Fig. 5; Munro et al. (2013)) and the broader subtropical Northeast Pacific (Palevsky et al., 2016).293

Productivity in the northern CCS has been consistently biased in regional models (Banas and294

Hickey, 2008), including in our initial simulations. We conducted simulations with and without295

lateral nitrogen fluxes at the Strait of Juan de Fuca imposed as boundary condition from model296

simulations by Davis et al. (2014). Consistent with that study, without the nutrient inputs from297

the Salish Sea, NPP was biased low by > 50%. The inclusion of the effects of nitrogen inputs at298

the Strait of Juan de Fuca brought the model much closer to satellite-based empirical models. The299

inclusion of these inputs is consistent with the study by Davis et al. (2014), and it is used in all300

results reported here.301
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Figure 5: Spatial distribution of annual Net Primary Productivity (mol C m−2 yr−1) integrated over
the depth of the photic zone, from (top left) ROMS, (top right) CalCOFI, (bottom left) VGPM, and
(bottom right) CbPM.

The seasonal cycle of NPP is also well captured by the model (Fig. 6). In all 6 regions of302

the CCS, the climatological NPP, integrated over the depth of the photic zone and averaged over303

the regional mask, exhibits an amplitude and phasing that is within the range of satellite-based304

empirical models. The most notable exception is the offshore Northern domain, where a spring305

bloom is predicted to be of stronger magnitude than estimated by either satellite product. This306

model result is consistent with measured geochemical tracers, which also indicate the spring bloom307

in the offshore Northeast Pacific is greater than estimated from the satellite algorithms (Palevsky308

et al., 2016). A smaller discrepancy occurs in the southern nearshore region, where ROMS-BEC309

generates greater summer production than either of the satellite algorithms. Model NPP in the310

oligotrophic part of the domain is lower than satellite estimates, but is more consistent with the311

most offshore values in the depth-integrated rates based on radiocarbon bottle incubations from312

CalCOFI. Overall, where and when ROMS-BEC and satellite algorithms for NPP disagree, ROMS-313

BEC output is generally closer to the available observational data.314

11



Figure 6: Seasonal cycle of annual Net Primary Productivity. The NPP rate (mol C m−2 yr−1)
from ROMS-BEC (black), and two satellite algorithms (VGPM, blue; CbPM, red) are integrated
over the depth of the photic zone, and averaged over 6 regions (see Fig. 3) from northern (top row),
central (middle row), and southern (bottom row) of the CCS, and divided by distance from the
coast into a nearshore (0-100 km; right column) and offshore (100-500 km; left column) region.

3.1.2 Seasonal limitation of productivity by light and nutrients315

To evaluate the role of environmental factors shaping the seasonal cycle and regional differences316

in rates of productivity, we computed monthly mean limitation factors for each of the environmen-317

tal variables that modulate the maximum growth rates, including macronutrients (NO−3 , PO3−
4 ,318

Si(OH)4), Fe, and light; see (1). By construction, growth rates are limited by only one nutri-319

ent at a time (Liebig’s Law of the Minimum), such that only the lowest value has an influence320

on rates. Light operates as a multiplicative factor on nutrient limitation, reducing growth relative321

to the light-saturated photosynthesis rate (Geider et al., 1998). Temperature influences maximum322

growth rate, but is not considered a limiting factor in the upper ocean, so is not analyzed here.323

Over a climatological seasonal cycle, small plankton growth rates are almost always reduced324

by light more so than by nutrients, regardless of season or location (Fig. 7). The small plankton325

are assumed to have a lower half-saturation constant for nutrients, and the resulting higher affinity326

makes them less prone to nutrient limitation than large plankton are. Thus, in the inshore regions327

where nutrients are high, light is always limiting. Offshore, nutrients can limit small phytoplank-328
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ton to a similar degree as light in the summer. However, large phytoplankton make up ≈ 90% of329

modeled NPP on average, and large phytoplankton (“diatoms”) are primarily limited by nutrient330

availability. In the model, this results from a nutrient supply by combined wind-induced upwelling331

and eddy-induced subduction (Gruber et al., 2011; Nagai et al., 2015; Renault et al., 2016a) that is332

unable to saturate the potential net uptake of nitrogen by phytoplankton at prevailing light levels.333

Significant eddy fluxes also occur due to submesoscale eddies and fronts in the CCS (Kessouri334

et al., 2020), but are not resolved in this model. Large phytoplankton only experience light limita-335

tion in the northern CCS, where the seasonal cycle alternates between winter light limitation and336

nutrient limitation for the rest of the year.337

Figure 7: Seasonal cycle of growth limitation factors for light (γ term in (1), blue) and for nutrients
(λ term in (1): NO−3 (green) and Fe (red) for diatoms (solid) and small phytoplankton (dashed)).
Factors are NPP-weighted and averaged over the photic zone for each region shown in Fig. 3.
Limitation factors close to 1 mean no limitation; values close to 0 mean complete limitation.

While on the regional scales used for this analysis nitrogen limitation appears more stringent338

than Fe limitation throughout the CCS, significant Fe limitation occurs on smaller scales and339

shorter durations (see below). The seasonal amplitude of plankton growth rates is relatively small340

(≈ 10%), indicating that the amplitude of seasonal production (≈ 100%) is governed by seasonal341

controls on biomass rather than growth rates. The trade-off between light and nutrient limitation342

spatially and seasonally is a ubiquitous feature of phytoplankton distributions and phenology. Mov-343

ing deeper in the water column, light becomes more limiting as photosynthetically active radiation344
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(PAR, light of 400 - 700 nm wavelengths) is absorbed and scattered, while nutrient concentra-345

tions are greatest below the surface mixed layer and rapidly decrease upward across the seasonally346

variable pycnocline; i.e., there is a well-defined nutricline.347

The competing influences of nutrient and light limitation on depth of optimal plankton growth348

(i.e., highest growth rates) are reflected in the depth of the deep chlorophyll maximum (DCM).349

In the CCS, the depth of the DCM deepens from the coast to the open ocean, suggesting that the350

growth-maximizing combination of light and nutrients is found deeper offshore, consistent with351

a deepening nutricline that intensifies nutrient limitation at the surface and light limitation where352

nutrients are abundant, for both small and large phytoplankton. We use the observed pattern of the353

DCM depth as an indicator of whether the model achieves a realistic trade-off between these two354

countervailing growth condition gradients (Fig. 8).355

However, for DCM depth to be a reliable indicator of phytoplankton growth rate trade-offs,356

we must rule out two alternative interpretations relating to isopycnal advection and photoacclima-357

tion. First, the offshore deepening of the DCM can have a physical origin. Because it closely358

follows the plunging of isopycnal surfaces offshore, the vertical peak in biomass and associated359

chlorophyll could be caused by eddy subduction carrying high surface chlorophyll away from the360

coast along deepening isopycnals (Gruber et al., 2011; Nagai et al., 2015; Renault et al., 2016a).361

To evaluate this possibility, we compared the depths of maximum chlorophyll concentration and362

phytoplankton biomass to the depth at which the product of light and nutrient limitation factors363

are maximized (Fig. 8). These maps are virtually indistinguishable, suggesting the DCM follows364

growth rates rather than advection. As a more stringent test, we performed a short (5-year) simu-365

lation in which surface PAR was reduced by 10%. The results revealed a significant shoaling of366

both the biomass and Chl peaks, but no detectable change in isopycnal depths, confirming that367

these depths do in fact reflect a nutrient-light trade-off rather than advection along density sur-368

faces. Second, the peak depth of Chl may also be decoupled from that of biomass and growth369

rates due to photoacclimation, or a shift in the amounts of light-harvesting pigments and photopro-370

tective compounds produced by phytoplankton in response to the light-environment. This process371

is included in the ROMS-BEC representation of phytoplankton physiology following the model372

of Geider et al. (1998), which relates changes in chlorophyll synthesis and nutrient uptake in re-373

sponse to changing PAR. Indeed, we find that the depth of the DCM is slightly deeper than that of374

the maximum plankton biomass. However, the offshore and latitude gradients of the depth of peak375

biomass and chlorophyll are very similar. DCM deepening offshore is consistent with optimized376

growth conditions in the model, and reproduces the pattern observed in the available CalCOFI data377

(Fig. 8).378

In summary, the Chl maximum does not primarily reflect photoacclimation or isopycnal trans-379

port, although it is affected by those processes. Instead, it is found at approximately the same depth380

as that of peak biomass (panel c), which in turn is found at the depth that maximizes growth rate381

through the combined impacts of nutrients and light (panel d). This is the same depth at which NPP,382

the product of biomass and growth rate, is also maximum. Thus, these correspondences indicate383

that the model DCM is a reflection of the essential trade-off between light and nutrient limitation,384

and the fidelity to the observed DCM implies this trade-off is adequately captured.385

Growth rates are modulated by a complex and evolving pattern of nutrient limitation by reactive386

nitrogen (NO−3 +NH+
4 ) and soluble dissolved Fe, with no appreciable limitation by Si(OH)4 and387

PO3−
4 in the CCS. The limitation factors are mapped as a biomass-weighted fraction of time that388

each of the nutrients is most limiting (Fig. 9). The spatial pattern among nutrients largely reflects389
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Figure 8: Depth of the vertical maximum of Chlorophyll in CalCOFI (top left) and ROMS (top
right), and of model diatom biomass (bottom left) and nutrient limitation factor (bottom right). The
correspondence between model fields demonstrates that the model DCM tracks nutrient limitation,
while the fidelity to observations implies the model captures a realistic trade-off between nutrient
and light limitation.

the areas where NO−3 supply routinely exceeds maximum potential uptake seasonally. Thus, the390

waters entering the CCS from the subarctic High Nutrient – Low Chlorophyl (HNLC) region are391

most frequently Fe limited. Along the coast, the seasonal upwelling of excess nitrogen leads to392

significant periods of Fe limitation as well. In the coastal zone off Monterey Bay, Fe limitation393

has been diagnosed via incubation experiments, in a band of water slightly offshore, with nitrogen394

limitation both in more shoreward and open coastal zones (Firme et al., 2003). This pattern is395

consistent with that predicted by the model (Fig. 9b inset). Most of the rest of the model domain396

is perpetually nitrogen limited.397
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Figure 9: Frequency of limitation by NO−3 (left) and Fe (right) for the model’s dominant primary
producer, diatoms. The limitation factors are weighted by biomass (as in Fig. 7), using 5-day
output, and plotted as the fraction of time that each nutrient limitation factor is the lowest among
nutrients. The inset shows offshore band of relatively frequent Fe limitation along the central
CCS, similar to that observed by (Firme et al., 2003).

3.1.3 Nutrient concentrations398

Surface nutrient concentrations provide an important measurable test of system behavior. For399

nutrients that limit phytoplankton growth, accurately simulating their distributions is a necessary400

condition for a mechanistic prediction of NPP. Moreover, they provide an integrative measure of401

net community production (equal to NPP less community heterotrophic respiration) and export of402

organic matter to the thermocline. We therefore compared model predicted distributions of the two403

primary limiting nutrients, NO−3 and Fe, to available observations.404

Coastal measurements of dissolved Fe reveal a spatially patchy distribution, reflecting its short405

residence time with respect to removal by plankton uptake and particle-active scavenging. Existing406

data are too sparse to yield a clear climatological pattern for model validation. However, the407

primary coastal region where the model predicts most frequent Fe limitation, in the central CCS,408

has been relatively well sampled, including on two cruises off Monterey Bay that also tested for409

Fe limitation (Firme et al. (2003); see Fig. 9, inset). Given the lack of a clear large-scale pattern410

of surface Fe levels, we used a more statistically-based validation metric, focusing on the relative411

frequency of Fe measurements versus concentration and distance from the shore (Fig. 10). On412

average, the data and model both show a decline in the mean and median Fe levels with offshore413

distance. This reduction is driven largely by the decreasing frequency of high concentrations, while414

the most commonly observed Fe levels remain consistent at ≈ 0.5 · 10−6 mol m−3 regardless of415

distance from shore. The thinning tail of high concentrations in Fe distribution with cross-shelf416

distance occurs in both modeled and observed fields, but is more pronounced in the measurements.417

In the CCS, the nutrient most often limiting NPP is reactive nitrogen, of which by far the largest418

and most commonly measured pool is NO−3 . We therefore compare the model simulated patterns419
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Figure 10: Histogram of surface Fe concentrations (10−6 mol m−3) from observations (left) and
ROMS (right). Because Fe concentrations are patchy in nature and sparsely observed, values are
binned by distance from shore (0-20 km, upper row; 20-40 km middle row; 40-60 km lower row)
to reveal a cross-shelf gradient, in the same latitude band off Monterey Bay for which observations
were made on summer cruises (Firme et al., 2003).

of NO−3 to climatological values from the World Ocean Database (Fig. 11). A depth of 50 m is420

chosen because it approximates the average depth of maximum biomass and NPP (see Fig. 8) and421

is generally near the base of the photic zone on the continental shelf. We included all historical422

measurements for this analysis because the data density in the model period (1994-2010) was much423

sparser, and no significant differences were found between the average NO−3 in this period relative424

to 1955-2013.425

ROMS-BEC captures regional patterns well for NO−3 (Fig. 11). Annual mean concentrations426

of ≈ 15 mmol m−3 along the coast decline to values below the half-saturation level for model427

diatom growth (NO−3 < 1 mmol m−3) within 500 km from shore. The offshore gradient is similar428

throughout most of the CCS, except in the Southern California Bight (SCB), where coastal sur-429

face values are much lower. Similar model fidelity was found for other macronutrients (Si(OH)4,430

PO3−
4 ), but not shown because they do not reach limiting concentrations. The coastal zone exhibits431

strong variability in NO−3 at 50 m, with standard deviations of 5-10 mmol m−3 throughout most432

17



of the coastal zone, but with a slight northward increase in variance (Fig. 11c). The variability of433

NO−3 in the climatology (WOA) exhibits a similar spatial pattern, but with ≈ 50% of the magni-434

tude. Thus, approximately half of the variation in surface nutrients most commonly limiting NPP is435

associated not with the seasonal cycle, but with interannual variability. The model also reproduces436

observed magnitudes and patterns of NO−3 variability (Fig. 11d). We use the interannual anomaly437

fields in the model and in observations to test the importance of nutrient supply as a mechanism438

driving changes in NPP over time.439

Figure 11: Long-term mean (upper row) and historical variability (bottom row) of nitrate (mmol
m−3) near the base of the photic zone (50 m) in ROMS (left column), WOD (center column), and
their correlations (right column). Variability is mapped as the standard deviation and consists of
roughly equal contributions from seasonal and interannual variability (see text). The full period
of the World Ocean Database (1955-2013) is used to yield the most robust estimate of variance.
The correlations between ROMS and WOD are highly significant (p�0.01) for both mean and
variability, with squared Pearson correlation coefficients (R2) of 0.84 and 0.80, respectively.
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3.1.4 Interannual variability in surface nutrients and NPP440

Factors that limit NPP during the mean seasonal cycle may drive interannual and longer term441

productivity changes. We examined correlations between NPP and both light and nutrient concen-442

trations in model simulations and observations, where available. Interannual anomalies in NO−3 in443

ROMS-BEC are found to be well correlated (R2 ≈ 0.5) to the density of water at 100 m (Fig. 12).444

This reflects the role of pycnocline heave and vertical mixing in supplying macronutrients, and445

alleviating local nutrient limitation. Observations show a similar magnitude of correlation in the446

southern and central CCS, but a weaker correlation to the north. This may reflect the role of nu-447

trient supply processes that are either missing or represented only climatologically in our model,448

and not connected to pycnocline heave. Because the weaker correlations are in the northern do-449

main where nutrients can enter from subarctic surface waters, the climatological NO−3 used for the450

boundary conditions is a likely culprit. However, the presence of river NO−3 sources or a variable451

Juan de Fuca flux could also weaken the correlation in the observations relative to the model.452

Figure 12: Correlation (R2) between NPP and density, from ROMS-BEC (left) and CalCOFI mea-
surements. The NPP rate is integrated over depth from 14C bottle incubation data, and density is
interpolated to 100 m as an index of nutrient supply (see Fig. 13). In both variables, the mean
seasonal cycle is removed leaving interannual variations. Relationships have similar strength in
data and model, and indicate that ≈ 50% of interannual variability in NPP can be attributed to
anomalous nutrient supply due to pycnocline heaving.

Predicted correlations between NPP and density can be tested directly by combining bottle in-453

cubations and hydrographic observations in the southern CCS (Fig. 13). Relationships between454

nutrient and density anomalies (subtracting the mean seasonal cycle), are of similar strength, ac-455
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counting for ≈ 50% of the variability in both CalCOFI observations and model simulations. Inter-456

annual anomalies in NPP in ROMS-BEC are also significantly correlated with surface PAR (not457

shown) due to variable cloudiness, though it accounts for a smaller fraction of the variance (≈458

20%). The role of light is confined closer to the coastal upwelling where surface NO−3 is high, and459

light availability thus limits phytoplankton growth.460

Figure 13: Correlation (R2) between NO−3 and density at 100 m depth in ROMS-BEC (left) and
WOD (right). For both variables, the mean seasonal cycle is removed leaving interannual varia-
tions. Interannual variations in subsurface (100 m)NO−3 highly correlated with density (R2 ≥ 0.8)
in most of CCS. Correlation is weaker in northern CCS in data than in model.

3.1.5 Carbon fluxes from the photic zone461

Of the net production of organic matter by phytoplankton, a substantial fraction can be respired462

by zooplankton and higher trophic levels. The remainder is available to be transported away, by463

particle sinking and transport of dissolved organic matter, e.g., via eddy subduction (Sec. 3.1.2).464

The fraction of NPP that is regenerated within the surface ocean depends on food web processes,465

such as grazing rates. Although data is not available to evaluate large-scale patterns of grazing466

rates, an indirect comparison can be made through the export flux and the fraction of NPP that467

is exported in sinking particles rather than recycled (the so-called pe-ratio (Dunne et al., 2005;468

Murray et al., 1996)).469

The fraction of NPP that is exported varies from 5-25%, consistent with the range of values470

inferred in field studies (Fig. 14). The model predicts highest pe-ratios in the coastal zone, where471
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productivity is high and sea surface temperature relatively low. These dependencies are also con-472

sistent with those inferred from a global analysis of rate measurements for NPP and net community473

production (NCP, assumed equal to total export of both particulate and dissolved organic carbon)474

(Dunne et al., 2005). For a more quantitative comparison, we compared modeled pe-ratios to those475

predicted by a statistical model fit to global observations by Dunne et al. (2005), over the sea-476

sonal cycle in each of our 6 standard CCS regions (Fig. 14). In both the empirical model and in477

ROMS-BEC, the mean value, phasing, and seasonal amplitude of changes in pe-ratio are similar.478

Empirically based estimates generate a similar result that remains consistent with model simula-479

tions, even when sea surface temperature is held constant. This suggests that temperature and its480

impacts on the relative growth rates of phytoplankton and their grazers are not the essential cause481

of variable pe-ratios.482

Figure 14: Annual mean and seasonal cycle of fraction of NPP that is exported in sinking particles
(i.e., pe-ratio; colored lines), and the export flux (mol C m−2 yr−1; black line). Values diagnosed
from model simulations (red line) are compared to an empirically derived algorithm (Dunne et al.,
2005) based on Chl and SST (blue line), and from the same algorithm applied with constant SST
(green line). Observed annual net community production, which should approximate export on an
annual basis are measured to 5-10 mol C m−2 yr−1 (Munro et al., 2013).

Annual mean export flux represents the transfer of biogenic material from the surface to depth,483
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and thus the influence of CCS productivity on air-sea CO2 flux and thermocline properties. Model484

simulated export production ranges from ≈ 1 − 10 mol C m−2 y−1 (Fig. 14b). Few measurements485

of export or net community production are available to evaluate the overall pattern of this flux. In486

the SCB region, measurements of O2 have been used to estimate NCP rates of 3 - 17 (mean 6.5)487

mol C m−2 y−1 (Munro et al., 2013), in line with modeled rates and with similar spatial patterns488

of export (greatest along the Northern coast of the SCB). Munro et al. (2013) also combine in-489

formation from 15N uptake experiments and nitrate based new production ratios (Dugdale et al.,490

1992; Eppley et al., 1992) with radiocarbon incubations to generate very similar estimates of the491

magnitude and spatial variability of production in the SCB. Particle-based estimates of export (ne-492

glecting the role of dissolved carbon) are lower than observed NCP as well as ROMS-BEC export,493

2 - 4 mol C m−2 y−1 (Collins et al., 2011; Stukel et al., 2011), though enhanced particle export494

associated with mesoscale fronts (2 - 3 times greater rates over smaller spatial and temporal scales495

(Stukel et al., 2017)) highlights the potentially important role of subduction by eddies and fronts in496

explaining mismatches between observations. Importantly, ROMS-BEC generates such mesoscale497

features which contribute to model export estimates. While the model assumes particulate matter498

is redistributed vertically without being transported by the lateral circulation, the magnitudes and499

pattern of export are not substantially different from models that include explicit 3-dimensional500

particle transport (Frischknecht et al., 2018).501

Model export production is also similar to regional nutrient budget analyses which suggest NCP502

averaging 7 - 9 mol C m−2 y−1 over the broader CalCOFI region (Roemmich and McCallister,503

1989; Bograd and Lynn, 2001). Similar nutrient budget analysis indicates that annual NCP should504

be ≈ 17 mol C m−2 y−1 off Monterrey Bay, again in line with ROMS-BEC estimates of export505

for that region (Fig. 14b). As noted above, the fidelity of modeled nitrate distributions across the506

model domain provides a critical broad-scale measure of net biological drawdown, and thus of net507

community and export production.508

Surface ocean CO2 partial pressure and sea-to-air flux (Fig. 15) is reduced by net commu-509

nity production, increased by surface heat flux, reduced by freshwater fluxes, and modulated by510

upwelling and lateral circulation. It thus represents another important metric of overall system511

function. The role of the CCS and its sub-regions in the atmosphere-ocean balance of CO2 has512

previously been investigated in several studies, both empirically (e.g., Hales et al. (2012)) and in513

models (e.g., Fiechter et al. (2014); Turi et al. (2014) and references therein). We evaluated the514

patterns of annual mean and summertime surface pCO2 in the model hindcast simulation against515

observations in the SOCATv6 database from 1995-2010 (Bakker and coauthors, 2016), and the as-516

sociated air-sea fluxes over the modeled coastal region. Similar to observations over the simulated517

period, strong CO2 supersaturations are simulated in a narrow band of coastal water within about518

100 km of the shore (Fig. 15). The values are highest along the central coast (35N-43N), lowest519

in the northern CCS, and intermediate in the southern domain. The highest values are associated520

with major topographic features, as previously noted by Fiechter et al. (2014).521

The lack of apparent regional or seasonal bias in the the surface pCO2, together with the good522

model-data agreement in surface buoyancy fluxes (Renault et al., 2021) and biological rates in these523

simulations, suggests that the balance of processes regulating the model’s surface CO2 fluxes is524

reliably captured. Consistent with previous studies, the net integrated CO2 flux to the atmosphere525

(an uptake of 1.4 Tg C yr-1) is found to be a relatively small residual of larger compensating526

outgassing and ingassing fluxes. A detailed accounting of factors driving pCO2 and air-sea flux527

variability has been described (Fiechter et al., 2014; Turi et al., 2014). Our model predicts a528
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somewhat larger net uptake than previous studies, likely because our model domain extends farther529

into the northern CCS where the combination of heat loss and fresh water forcing suppresses530

surface pCO2. An extension of similarly detailed analysis of air-sea flux variability to the northern531

CCS domain is left to future work.532
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Figure 15: Surface ocean CO2 partial pressure (ppm) and air-sea flux (mol m−2 yr−1). (a) Annual
surface pCO2 from ROMS. (b) Surface pCO2 from SOCATv6 gridded coastal dataset, averaged
over all months from 1995-2010. (c) Annual air-sea CO2 flux from ROMS. Negative values indi-
cate outgassing to the atmosphere.
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3.2 Thermocline533

Here we test the model’s representation of biogeochemical properties below the mixed layer and534

photic zone, i.e., in the thermocline. We focus on distributions and variability of O2 and arag-535

onite saturation state (ΩA) as these properties influence habitability for calcification and aerobic536

respiration by marine animals. The values of ΩA are calculated from model dissolved inorganic537

carbon (DIC) and total alkalinity (Alk) using carbonate system equilibrium equations (CO2SYS)538

(van Heuven et al., 2011). The variability of O2 has been analyzed in greater detail using previous539

simulations of this model with different atmospheric and physical boundary conditions (Durski540

et al., 2017).541

To evaluate the vertical structure of biogeochemical tracers, we turn to repeat hydrographic542

sections (Fig. 16). Transects through three cross-sections spanning the Southern California Bight543

(CalCOFI line 80), the central California coast (MBARI line 67), and the central Oregon coast544

(Newport line) show the typical vertical and cross-shelf gradients of NO−3 and O2. The downward545

enhancement of NO−3 and depletion of O2 is a signal of the broad-scale vertical redistribution of546

these elements by the formation and degradation of organic matter within the CCS, as well as the547

gradients imported from the Pacific basin through the boundary conditions. The shoaling of the548

isopleths of both quantities follows that of the isopycnal surfaces by upwelling along the coast. The549

distributions of NO−3 and O2 are generally well reproduced by ROMS-BEC. The model somewhat550

underestimates the slope of these isopleths very nearshore. This tendency is also reflected in, and551

likely derived from, the same underestimate in the zonal tilt of isopycnal surfaces (Renault et al.,552

2021).553

Along isopycnal surfaces, O2 generally increases with latitude and with distance from shore,554

reflecting the contrasting properties carried by the broad offshore California current from the O2-555

rich subarctic, and the narrow near-shore California Undercurrent that transports low-O2 waters of556

tropical origin northward along the slope. Both northern and southern end-member water types can557

be seen on the isopycnal surface 26.5 (Fig. 17), which also comprises the source of water upwelling558

onto the continental shelf along much of the US west coast (Pierce et al., 2012). On this and other559

density surfaces, the distribution of O2 in ROMS-BEC is consistent with climatological observa-560

tions, suggesting that the balance of distinct water masses and the respiratory modifications they561

experience in the interior of the domain are relatively well represented in the model. Thermocline562

nutrient distributions exhibit a similar model skill (not shown).563

TheO2 in the thermocline of the CCS is highly variable, with standard deviations of ≈ 20 mmol564

m−3 that are on average 15-20% of the mean O2 across the historical measurements (Fig. 17). The565

magnitudes and patterns of variance are well captured by the ROMS hindcast. In both the model566

hindcast and in observations, the standard deviation of monthly O2 is ≈ 5 times larger than that567

of the climatological seasonal cycle. Thus, a large majority of the O2 variability is explained568

by non-seasonal time-scales, including large eddy-driven fluctuations (Frenger et al., 2018) and569

low-frequency climate variability (Buil and Lorenzo, 2017; McClatchie et al., 2010). Both model570

and observations indicate that O2 variation peaks slightly offshore, in a pattern resembling that of571

eddy kinetic energy (Renault et al., 2021), and reflecting the role of eddies in transporting hypoxic572

waters offshore (Frenger et al., 2018). The high interannual to decadal O2 variability observed in573

the central North Pacific, which reaches its maximum on the isopycnal 26.5, is not included in the574

climatological boundary conditions, and thus likely accounts for the model bias toward low O2575

variance in the north of the domain.576
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Figure 16: Vertical sections of annual mean NO−3 (left) and O2 (right) (mmol m−3), from ROMS
(left) and WOD (right) at the latitudes with regular observations by repeat hydrographic surveys.
The lines span the northern CCS (upper row, ≈ 44.5◦N, nearest the Newport OR), the central CCS
(middle row, MBARI line 67), and the southern CCS (bottom row, CalCOFI line 80). Locations of
observations are shown in Fig. 3.

Variations inO2 on depth surfaces in the thermocline are also dominated by interannual anoma-577

lies. The fluctuating O2 at depths of 100-200 m are highly correlated with density (R2 ≥ 0.5)578

throughout the CCS, reflecting the importance of isopycnal heaving of the background O2 gradi-579

ent (Ito et al., 2019). Similar correlations are observed in ROMS and the World Ocean Database580

(Fig. 18). In the model, the largest such anomaly is associated with the ENSO event in 1997-98, in581

which deepened isopycnals yield high O2 conditions that last for ≈ 1 year. The signal is recorded582

in the central CCS as well, although the magnitude of the anomalies is reduced by ≈ 50% relative583

to the better-sampled event in the SCB.584

The variability of O2 within an isopycnal surface can be used to account for this portion of585

variance, leaving only lateral circulation and respiration. We find that along σθ = 26.5 kg m−3,586

a large fraction of O2 variability is correlated with salinity (Fig. 19), commonly used as a proxy587

for tropical low-oxygen and high-salinity water transported poleward in the coastal undercurrent588

(Meinvielle and Johnson, 2013). Interannual variability in respiration rates on this surface also589

accounts for ≈ 20% of isopycnal O2 variance, and is in turn correlated with the depth of the den-590

sity layer (Deutsch et al., 2011). Historical observations show a declining strength of correlation591

between S and O2 with latitude, suggesting that variability from dynamics other than the CUC be-592

come an increasingly important source ofO2 variability to the north. Indeed, the variability ofO2 in593

central mode water from the open North Pacific is most pronounced on this density surface (?Buil594
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Figure 17: Thermocline O2 in model simulations and observations of the climatological mean (up-
per) and standard deviation (lower). All maps are interpolated to a potential density surface (26.5)
surface chosen as the density class of waters upwelling onto the shelf in summer (a.k.a. “source
water”). The mean O2 maps are from summer months (JJA), however other seasons reveal sim-
ilar model fidelity. Observed mean summer O2 is from objectively mapped climatology (WOA).
Variability is mapped as the standard deviation of monthly values from the World Ocean Database
covering 1955-2013 (lower right), and it is predominantly due to interannual variability rather than
the seasonal cycle (see text). The correlations between ROMS and WOD are highly significant
(p�0.01) for both mean O2 and its variability, with squared Pearson correlation coefficients (R2)
of 0.95 for the mean state and 0.35 for the spatial pattern of temporal variability.

and Lorenzo, 2017), and the North Pacific Current is thought to transport isopycnal O2 anomalies595

into the northern CCS and contribute to the significant interdecadal fluctuations observed in the596

CCS [insert citation in comment here]. However, this longer term variance along isopycnals is not597

represented in the climatological biogeochemical boundary conditions in the model. Thus the rela-598

tively constant correlation between S and O2 along isopycnal surfaces across latitude in the model599

may stem from the lack of O2 variability on isopycnal surfaces as those waters enter the domain600

from the open North Pacific. A complete attribution of the observed magnitudes of O2 variance601
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Figure 18: Correlation between O2 and density anomalies at 100 m, in ROMS-BEC (left) and
WOD (right). Interannual variations in subsurface O2 are highly correlated with density (R2 ≥
0.5) throughout the CCS, and the strength of the relationship is similar in model and observations.

in source waters to the CCS will require inclusion of anomalies entering from the broader North602

Pacific (Deutsch et al., 2006; Kwon et al., 2016) and is left for future work.603

In addition to low coastalO2, the CCS is characterized by shallow depth horizons for carbonate604

saturation (Fig. 20). Below ≈ 100 m depth, carbonate concentrations are commonly undersaturated605

with respect to aragonite mineral formation, and thus inhibit shell formation by calcifying organ-606

isms. The aragonite saturation state, ΩA, is predicted to fall below saturation (ΩA < 1) along607

most of the coast in summer, consistent with observations in NOAA coastal surveys (e.g., Feely608

et al. (2008)). Coastal hydrographic surveys reveal a strong mesoscale patchiness to the carbonate609

saturation state, likely reflecting mesoscale eddies and submesoscale features. In the multi-annual610

mean distribution of ΩA, the model hindcast captures the scale and intensity of undersaturated611

conditions well.612

Both low O2 and low ΩA have been implicated as primary factors mediating the influence of613

climate on organism fitness and species habitat in the CCS (Howard et al., 2020; Busch and McEl-614

hany, 2016). We compare decadal trends in both these properties from the hindcast simulations615

to the observed changes over time. For ΩA, the measurements are too sparse and the distribution616

too patchy to define a robust trend, even over the short model period. For each property, time617

series are shown for the regions with the most data coverage (Fig. 21): northern CCS for aragonite618

saturation, and southern CCS for O2. In both cases, the trend in the data is within the uncertainty619

in the measurements.620

As a metric of variability in these habitat constraints, we computed the volume of water subject621
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Figure 19: Correlation coefficient between O2 and salinity anomalies in (left) ROMS, and (right)
WOD along the isopycnal surface σθ = 26.5 kg m−3. Prevailing negative values indicate that high
S occurs when O2 is low. To maximize data availability, the observational correlation is based on
monthly anomalies in WOD from the period 1955-2013. The correlations are of similar magnitude
when confined to the simulated period, 1995-2010, but are only available in the Southern California
Bight.

to hypoxic or corrosive conditions. We use a constant O2 level of 100 mmol m−3 as a simple622

indicator of hypoxic constraints, recognizing that this value varies among species, and depends623

on other factors, including temperature (Deutsch et al., 2015). Corrosive conditions are defined624

by simple thermodynamic undersaturation (ΩA < 1), though biological sensitivities may begin at625

higher thresholds. Water volumes are computed as the sum of grid cell volumes with O2 < 100626

mmol m−3 or ΩA < 1 that are on the continental shelf (− z < 200 m).627

The volume of hypoxic and corrosive water in the CCS varies strongly over latitude and time628

(Fig. 22). For both properties, restriction of putative habitat volume is stronger to the north of Pt.629

Conception, opposite the latitudinal gradient ofO2 and ΩA. The corrosive volumes are much larger630

than hypoxic volumes, exceeding 90% of water volume in northern latitudes during the summer631

upwelling season, consistent with NOAA survey data. On an annual basis, waters with a more632

stringent criterion for calcification (ΩA < 2) are about twice as voluminous still, primarily because633

the length of the season with low carbonate is broadened. Hypoxic conditions occupy a smaller634

fraction of shelf waters, but reach 30% of shelf water volume over a broad latitude range. The635

fractional coverage by hypoxia peaks around 45◦N, on the Oregon coast, and it is quite small in the636

Southern California Bight, where O2 declines most sharply below 200 m rather than on the shelf.637

An analogous figure is shown in Renault et al. (2021) for the along-coast and temporal vari-638
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Figure 20: Aragonite saturation state (ΩA) at 100 m from observations (left) and ROMS-BEC
(right). Observations are from large-scale objectively analyzed fields (color field, GLODAP2 (Lau-
vset and coauthors, 2016)), and from NOAA coastal surveys in the summer of 2007 (circles, Feely
et al. (2008)). Model distribution is averaged over summer (JJA) from 2004-2010 climatology.

ability of the sea-surface height and depth of the σθ = 26.5 kg m−3 depth anomalies. Relative639

to the quantities shown in Fig. 22, they exhibit more along-coast coherence and a more dominant640

seasonal cycle, with less evident interannual variability than shown here, apart from the 1997-98641

ENSO event. This indicates somewhat smoother physical fields than biogeochemical ones, reflec-642

tive of non-conservative biogeochemical processes acting on top of the broader patterns of physical643

circulation influence.644

Variability in both habitat constraints is largely synchronous (Fig. 22c,d), reflecting the strong645

control on both O2 and ΩA by the effects of cumulative organic matter respiration. For both646

volumes, the fractional variation is similar and substantial, reaching ≈ 50% of the mean across647

much of the latitude range. Variability of corrosive volumes is greatly attenuated south of Pt.648

Conception. Simulated hypoxic volumes increased sharply during the early 2000s off Oregon,649

when major ecosystem die-offs were attributed to the onset of extreme hypoxia there (Chan et al.,650

2008).651
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Figure 21: Trends in thermocline O2 and ΩA over the simulated period. Maps of the linear trend
are shown in upper panels. Time series (lower panels) are shown for the regions with the most
data coverage for each tracer: northern CCS for carbonate, and southern CCS for O2. For ΩA

all available profiles are shown. For O2, the mean value and standard deviation are plotted as
box-whisker for each month in the WOD.
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Figure 22: Top row: mean temperature and temporal trend (◦C year−1) of water on the shelf (− z <
200 m). Middle and bottom rows: volume of corrosive and hypoxic water over time and latitude.
Water volumes are computed as sum of grid cell volumes with O2 < 100 mmol m−3 (bottom) and
ΩA < 1 (middle) that are on the shelf (− z < 200 m). Mean values for each month are shown in
the left column, and anomalies, computed as a fractional deviation from the climatological mean
monthly volume at each latitude, in the middle column. Trends over time are shown in the right
column.
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4 Conclusions652

We present model simulations of ecosystem and biogeochemical cycles in the CCS that reproduce653

the broad patterns of processes and states observed in this region over the past couple of decades.654

Our results demonstrate that productivity of the CCS reflects a complex interplay of factors. The655

limitation by the physical supply and removal of macronutrients (nitrate) provides the dominant656

seasonal and spatial pattern of NPP, but with significant constraints from light and Fe on a seasonal657

basis, especially in the northern CCS. Interannual variations in NPP are reasonably well predicted658

by fluctuations in pycnocline depth that modulate the rates of surface nutrient supply. Expanded659

datasets on near-surface Fe concentrations are needed to better establish its role as a limiting660

factor for growth in the CCS. A significant correlation between model NPP and surface irradiance661

suggests that changes in light are also influential. Together, these results suggest that an index of662

NPP that accounts for both regional pycnocline structure and cloud cover would be more skillful663

than one based only on coastal winds (e.g., Bakun (1990); Jacox et al. (2018)). Our results highlight664

the value of continued measurements of the depth of the chlorophyll maximum.665

Biogeochemical properties of subsurface waters in the CCS are also well reproduced by model666

simulations. The amplitude of interannual variability in NO−3 at the base of the photic zone and667

of O2 in the thermocline are also both strongly correlated to undulations of the pycnocline. The668

largest such anomalies in our simulation period were associated with the 1997-98 ENSO event,669

whose amplitude of density and O2 anomalies remains coherent over a wide latitude band, albeit670

with declining magnitude. For NO−3 , the overall variance is somewhat lower, and the strength671

of density correlations is somewhat higher in model output than in observations in the northern672

domain. This suggests an important role for anomalies entering the CCS from the subarctic North673

Pacific, an HNLC region. Basin-scale changes in biogeochemical properties are known to be ex-674

ceptionally high at the gyre boundary ≈ 45◦N (Mecking et al., 2008), and these remote anomalies675

are likely to play an important but uncertain role in the variability observed in the CCS. Similarly,676

inputs from terrestrial and riverine sources of nutrients and organic carbon could contribute to in-677

terannual variability in the system that is currently difficult to constrain from observational data.678

The impact of nearshore influences on the mean state suggests that its contribution to variability679

could also be substantial. Evaluating these remote influences from both the open ocean and from680

boundary inputs, using empirically-based time-dependent biogeochemical boundary conditions is681

an important avenue for future research.682

The variability of biogeochemical properties leads to significant changes in the volume of wa-683

ters characterized by biologically stressful conditions of hypoxia and carbonate undersaturation. In684

the volume anomalies for both habitat constraints, there is strong coherence across the CCS. Years685

with unusually large volumes of hypoxic or corrosive water offer few obvious latitudinal refuges.686

The onset of these conditions tends to propagate from the central CCS (≈ 40◦N), arriving in the687

northern CCS with a 2-3 month delay. Thus, monitoring hypoxia and CO2 system parameters in688

the central CCS may offer some seasonal predictability for northern ecosystem impacts.689
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Codes and Simulation Data The physical and biogeochemical codes used for our simulations690

are at https://github.com/UCLA-ROMS/Code. Simulation model output archive data can be made691

available by email requests to the Corresponding Authors.692
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5 Appendix: Biogeochemical Model702

Here, for completeness, we summarize the equations of the Biogeochemical Elemental Cycling703

(BEC) model in the implementation used for this work. This formulation is based on the original704

version presented in Moore et al. (2004).705

5.1 Variables and parameters706

5.1.1 Prognostic variables707

Name Description Units
NNH4 ammonium mmol N /m3

NNO2 nitrite mmol N /m3

NNO3 nitrate mmol N /m3

NN2O nitrous oxide mmol N /m3

NN2 nitrogen mmol N /m3

Ndon dissolved organic nitrogen mmol N /m3

PPO4 Phosphorus mmol P /m3

Pdop dissolved organic phosphorus mmol P /m3

O2 dissolved oxygen mmol O2/m3

Fe iron nmol Fe/m3

Fesp small phytoplankton iron mmol Fe/m3

Fediat diatom iron mmol Fe/m3

Fediaz diazotroph iron mmol Fe/m3

Fedofe dissolved organic iron mmol Fe/m3

Casp small phytoplankton calcium carbonate mmol CaCO3/m3

Sidiat diatom silicate mmol SiO2/m3

SiSiO2 Silicate mmol SiO2/m3

Alk total alkalinity mmol/m3

CDIC dissolved inorganic carbon mmol C/m3

Csp small phytoplankton carbon mmol C/m3

Cdiat diatom carbon mmol C/m3

Cdiaz diazotroph carbon mmol C/m3

Cdoc dissolved organic carbon mmol C/m3

Chlsp small phytoplankton chlorophyll mmol Chl/m3

Chldiat diatom chlorophyll mmol Chl/m3

Chldiaz diazotroph chlorophyll mmol Chl/m3

Czoo zooplankton carbon mmol C/m3

POCsed organic carbon in sediment mmol C/m2

CaCO3,sed inorganic carbon in sediment mmol C/m2

Sised Silicate in sediment mmol Si/m2

ISW Penetrative solar heat flux W /m2
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5.1.2 Local variables709

Name Description Units
Jusp,no3 nitrate uptake by small phytoplankton mmol N /m3/sec
Jusp,nh4 ammonium uptake by small phytoplankton mmol N /m3/sec
Judiat,no3 nitrate uptake by diatoms mmol N /m3/sec
Judiat,nh4 ammonium uptake by diatoms mmol N /m3/sec
Jammox rate of NH4 oxidation to NO2 mmol N /m3/sec
Jnit rate of NO2 oxidation to NO3 mmol N /m3/sec
Jdenitno3,no2 amount ofNO3 converted toNO2 by water column denitrif. mmol N /m3/sec
Jdenitsed amount of NO3 converted to N2 by benthic denitrif. mmol N /m3/sec
Jdenitno2,n2o amount ofNO2 converted toN2O by water column denitrif. mmol N /m3/sec
Jdenitno2,n2 amount of NO2 converted to N2 by water column denitrif. mmol N /m3/sec
JNfixdiaz total N2-fixation by diazotrophs mmol N /m3/sec
JNexcretediaz N excreted by diazotrophs mmol N /m3/sec
JphotoNdiaz N fixed by diazotroph (non-excreted) mmol N /m3/sec
Jusp,po4 phosphate uptake by small phytoplankton mmol P /m3/sec
Judiat,po4 phosphate uptake by diatoms mmol P /m3/sec
Judiaz,po4 phosphate uptake by diazotrophs mmol P /m3/sec
P remain
diaz remaining diazotrophs phosphate mmol P /m3/sec
J lossdiaz,dop non-grazing mortality of diazotrophs routed to POC mmol P /m3/sec
J lossdiaz,dip non-grazing mortality of diazotrophs routed to PIC mmol P /m3/sec
Jprodsp,caco3 CaCO3 production by small phytoplankton mmol CaCO3/m3/sec
Jphotosp,C carbon uptake by photosynthesis in small phytoplankton mmol C/m3/sec
Jphotodiat,C carbon uptake by photosynthesis in diatoms mmol C/m3/sec
Jphotodiaz,C carbon uptake by photosynthesis in diazotrophs mmol C/m3/sec
Jgrzsp grazing loss for small phytoplankton mmol C/m3/sec
Jgrzsp,dic grazed small phytoplankton routed to DIC mmol C/m3/sec
Jgrzsp,doc grazed small phytoplankton routed to DOC mmol C/m3/sec
Jgrzsp,poc grazed small phytoplankton routed to POC mmol C/m3/sec
Jgrzsp,zoo grazed small phytoplankton routed to new zooplankton

biomass
mmol C/m3/sec

Jgrzdiat grazing loss for diatoms mmol C/m3/sec
Jgrzdiat,dic grazed diatoms routed to DIC mmol C/m3/sec
Jgrzdiat,doc grazed diatoms routed to DOC mmol C/m3/sec
Jgrzdiat,poc grazed diatoms routed to POC mmol C/m3/sec
Jgrzdiat,zoo grazed diatoms routed to new zooplankton biomass mmol C/m3/sec
Jgrzdiaz grazing loss for diazotrophs mmol C/m3/sec
Jgrzdiaz,dic grazed diazotrophs routed to DIC mmol C/m3/sec
Jgrzdiaz,doc grazed diazotrophs routed to DOC mmol C/m3/sec
Jgrzdiaz,poc grazed diazotrophs routed to POC mmol C/m3/sec
Jgrzdiaz,zoo grazed diazotrophs routed to new zoo biomass mmol C/m3/sec
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Jaggsp aggregation loss of small phytoplankton mmol C/m3/sec
Jaggdiat aggregation loss of diatoms mmol C/m3/sec
J lsp non-grazing mortality of small phytoplankton mmol C/m3/sec
J lsp,dic non-grazing mortality of small phytoplankton routed to DIC mmol C/m3/sec
J lsp,doc non-grazing mortality of small phytoplankton routed to

DOC
mmol C/m3/sec

J lsp,poc non-grazing mortality of small phytoplankton routed to
POC

mmol C/m3/sec

J ldiat non-grazing mortality of diatoms mmol C/m3/sec
J ldiat,dic non-grazing mortality of diatoms routed to DIC mmol C/m3/sec
J ldiat,doc non-grazing mortality of diatoms routed to DOC mmol C/m3/sec
J ldiat,poc non-grazing mortality of diatoms routed to POC mmol C/m3/sec
J ldiaz non-grazing mortality of diazotrophs mmol C/m3/sec
J ldiaz,dic non-grazing mortality of diazotrophs routed to DIC mmol C/m3/sec
J ldiaz,doc non-grazing mortality of diazotrophs routed to DOC mmol C/m3/sec
J ldiaz,poc non-grazing mortality of diazotrophs routed to POC mmol C/m3/sec
J lzoo zooplankton mortality mmol C/m3/sec
J lzoo,dic zooplankton mortality routed to DIC mmol C/m3/sec
J lzoo,doc zooplankton mortality routed to DOC mmol C/m3/sec
J lzoo,poc zooplankton mortality routed to POC mmol C/m3/sec
fdzoo fractional factor for routing of zoo losses no units
Jaggsp aggregation of small phytoplankton mmol C/m3/sec
Jaggdiat aggregation of diatoms mmol C/m3/sec
Jaggdiaz aggregation of diazotrophs mmol C/m3/sec
Jdon,nh4 amount of dissolved organic N remineralized mmol N /m3/sec
Jdoc,dic amount of dissolved organic C remineralized mmol C/m3/sec
Jdop,po4 amount of dissolved organic P remineralized mmol P /m3/sec
Jdofe,fe amount of dissolved Fe remineralized mmol Fe/m3/sec
Jotherremin reminineralization in the sediments by processes other than

oxic remin. and denitrif.
mmol C/m3/sec

Jprodpoc amount of particulate organic C produced mmol C/m3/sec
Jprodpic amount of particulate inorganic C produced mmol C/m3/sec
JprodPSi amount of particulate organic Si produced mmol Si/m3/sec
Jprodpfe amount of particulate organic Fe produced mmol Fe/m3/sec
Jreminpoc remineralized particulate organic C mmol C/m3/sec
Jreminpic remineralized particulate inorganic C mmol C/m3/sec
JreminPSi remineralized particulate organic Si mmol SiO2/m3/sec
Jreminpfe remineralized particulate organic Fe mmol Fe/m3/sec
JscavFe scavenging of inorganic Fe mmol Fe/m3/sec
JsedFe remineralized Fe from sediment mmol Fe/m3/sec
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PAR photosynthetically active radiation W/m2

Φmineral
poc incoming mineral associated particulate C flux mmol C cm/m3/sec

Φout
poc particulate C-flux buried in the sediments mmol C /m2/sec

Φfree
poc free associated particulate C flux mmol C /m2/sec

Φsol
pic soluble and pic associated particulate C flux mmol C /m2/sec

Φnonsol
pic non-soluble and pic associated particulate C flux mmol C /m2/sec

Φsol
psi soluble and SiO2 associated particulate C flux mmol SiO2 /m2/sec

Φnonsol
psi non-soluble and SiO2 associated particulate C flux mmol SiO2 /m2/sec

Φsol
dust soluble and dust associated particulate C flux mmol C /m2/sec

Φnonsol
dust non-soluble and dust associated particulate C flux mmol C /m2/sec

Φsol
pfe soluble and dust associated particulate C flux mmol Fe /m2/sec

Φnonsol
pfe non-soluble and dust associated particulate C flux mmol Fe /m2/sec

Φremin,sed
poc remineralized organic C flux from sediment mmol C/m2/sec

Φremin,sed
pic remineralized inorganic C flux from sediment mmol C/m2/sec

Φremin,sed
Si remineralized Si flux from sediment mmol C/m2/sec

Φair
O2

O2 air-sea flux mmol O2/m2/sec
Φair
N2O

N2O air-sea flux mmol N /m2/sec
Φair
N2

N2 air-sea flux mmol N /m2/sec
Φair
CO2

CO2 air-sea flux mmol C/m2/sec
Sc Schmidt Number -
Ws Wind speed at 10 m m/sec
PV Piston Velocity m/sec

712

5.2 Ecosystem parameters713

Parameters Description Values Units
Model grid

∆z Model layer thickness variable meters
kρ Index of model vertical

level at tracer points
1-60 no units

Carbon

PCsp
ref max phyto C-specific

growth rate at Tref
(GD98) for small
phytoplankton

3.0 1/d

PCdiat
ref max phyto C-specific

growth rate at Tref
(GD98) for diatoms

3.0 1/d
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PCdiaz
ref max phyto C-specific

growth rate at Tref
(GD98) for diazotrophs

0.4 1/d

αchl chlorophyll-specific
initial slope of P vs. I
curve for diatoms and
small phytoplankton

0.3 mmol C m2/(mg
Chl W day)

αdiazchl chlorophyll-specific
initial slope of P vs. I
curve for diazotrophs

0.036 mmol C m2/(mg
Chl W day)

Nutrient limita-
tion

kspNO3
Small phyto. half satu-
ration constant forNO3

uptake

0.5 mmol N /m3

kdiatNO3
diatom half saturation
constant for NO3 up-
take

2.5 mmol N /m3

kspNH4
Small phyto. half
saturation constant for
NH4 uptake

0.01 mmol N /m3

kdiatNH4
Diatom half saturation
constant for NH4 up-
take

0.1 mmol N /m3

kspFe Small phyto. half sat-
uration constant for Fe
uptake

0.035e-3 mmol Fe /m3

kdiatFe Diat half saturation
constant for Fe uptake

0.08e-3 mmol Fe /m3

kdiazFe Diazotroph half satura-
tion constant for Fe up-
take

0.1e-3 mmol Fe /m3

kspPO4 Small phyto. half satu-
ration constant for PO4

uptake

0.01 mmol P /m3

kdiatPO4 Diatom half saturation
constant for PO4 up-
take

0.1 mmol P /m3

kdiazPO4 Diazotroph half satura-
tion constant for PO4

uptake

0.005 mmol P /m3
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kdiatSiO2 Diatom half saturation
constant for SiO2 up-
take

1 mmol SiO2 /m3

Fixed Stoi-
chiometry

QN :C Nitrogen to Carbon ra-
tio

0.137 mmol N /mmol C

QP :C Small phyto. and di-
atom P:C ratio

0.00855 mmol P /mmol C

Qdiaz
P :C Diazotroph P:C ratio 0.002735 mmol P /mmol C

Dissolved or-
ganic matter

τdom Dissolved organic mat-
ter remineralization in-
verse timescale

0.01 1/d

τremin,sed remineralization in-
verse timescale in
sediment

0.003 1/d

N2 fixation

αdiazex Ratio of N excreted by
diazotrophs to total N
fixed

0.3 no units

Chl stoichiome-
try and produc-
tion

Qsp,growth
N :chl,max Max ratio of Chl

produced to N photo-
synthesized for small
phyto.

2.5 mg Chl/mmol N

Qdiat,growth
N :chl,max Max ratio of Chl pro-

duced to N photosyn-
thesized for diatom

4.0 mg Chl/mmol N

Qdiaz,growth
N :chl,max Max ratio of Chl pro-

duced to N photosyn-
thesized for diaz.

3.4 mg Chl/mmol N
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Light

fIsw Fraction of incoming
radiation used for pho-
tosynthesis

0.45 no units

µw Radiation attenuation
coefficient per unit
chlorophyll

0.03 1/m/(mg Chl/m3)

µChl Radiation attenuation
coefficient for water

0.04 1/m

Fe stoichiome-
try and cycling

Qsp,g0
Fe:C Ratio used in the calcu-

lation of the Fe to C ra-
tio of uptake for small
phyto.

6e-6 mmol Fe/mmol
C

Qsp,g1
Fe:C Maximum Fe:C ratio of

uptake by small phyto.
if Fe < 2 · kspFe.

2.5e-6 mmol Fe/mmol
C

Qdiat,g0
Fe:C Ratio used in the calcu-

lation of the Fe to C
ratio of uptake for di-
atoms

6e-6 mmol Fe/mmol
C

Qdiat,g1
Fe:C Maximum Fe:C ratio of

uptake by diatoms if Fe
< 2 · kdiatFe

2.5e-6 mmol Fe/mmol
C

Qdiaz,g0
Fe:C Ratio used in the calcu-

lation of the Fe to C
ratio of uptake for dia-
zotrophs

42e-6 mmol Fe/mmol
C

Qdiaz,g1
Fe:C Maximum Fe:C ratio of

uptake by diazotrophs
if Fe < 2 · kdiazFe

14e-6 mmol Fe/mmol
C

βmax,scale1fe Scaling parameter used
in the calculation of Fe
scavenging

3.0 no units

βthresh,1fe Fe threshold parameter
used in the calculation
of Fe scavenging

0.6e-3 mmol Fe /m3
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βthresh,2fe Fe threshold parameter
used in the calculation
of Fe scavenging

0.5e-3 mmol Fe /m3

Jscav,0Fe Fe scavenging refer-
ence rate

0.12 mmolFe/m3/s

CaCO3 stoi-
chiometry and
production

Qsp,max
CaCO3:C Maximum calcification

to C photosynthesis ra-
tio

0.4 mmol
CaCO3/mmol C

fprodCaCO3
Initial calcification to C
photosynthesis ratio

0.026 mmol
CaCO3/mmol C

TCaCO3
1 Temperature parameter

used to modify the ini-
tial calcification rate

1. ◦C

TCaCO3
2 Temperature parameter

used to modify the ini-
tial calcification rate

-2. ◦C

Si stoichiome-
try

Qdiat,max
Si:C Maximum QSi:C ratio

for diatoms
0.685 mmol Si/mmolC

Qdiat,g0
Si:C Default Si:C ratio of

growth for diatoms
0.137 mmol Si/mmolC

Qdiat,g1
Si:C Ratio used to calculate

the Si to C multiplica-
tive ratio of growth for
diatoms

2.5 no units

Grazing

Jg,maxsp maximum grazing loss
for small phytoplank-
ton

2.5 1/d

Jg,maxdiat maximum grazing loss
for diatoms

1.95 1/d

Jg,maxdiaz maximum grazing loss
for diazotrophs

1.2 1/d
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βgrzz grazing coefficient,
used in density de-
pendent grazing
modification

1.05 mmol C/m3

βgrz,sp,0thres Small phytoplankton
threshold concentration
for grazing

0.001 mmol C/m3

βgrz,diat,0thres Diatom threshold con-
centration for grazing

0.02 mmol C/m3

βgrz,diaz,0thres Diazotroph thresh-
old concentration for
grazing

0.01 mmol C/m3

αgrz,zoosp Fraction of small phyto.
grazing going to zoo-
plankton

0.3 no units

αgrz,zoodiat Fraction of diatom
grazing going to
zooplankton

0.3 no units

αgrz,zoodiaz Fraction of diazotroph
grazing going to zoo-
plankton

0.21 no units

αgrz,pocsp Default fraction of
small phytop. grazing
going to POC

0.22 no units

αgrz,pocdiat Fraction of diatom
grazing going to POC

0.26 no units

αgrz,pocdiaz Fraction of diazotroph
grazing going to POC

0.0 no units

αgrz,docsp Fraction of small phyto.
grazing going to DOC

0.34 no units

αgrz,docdiat Fraction of diatom
grazing going to DOC

0.13 no units

αgrz,docdiaz Fraction of diazotroph
grazing going to DOC

0.24 no units

αgrz,dicsp Fraction of small phy-
top. grazing going to
DIC

0.36 no units

αgrz,dicdiat Fraction of diatom
grazing going to DIC

0.31 no units

αgrz,dicdiaz Fraction of diazotroph
grazing going to DIC

0.55 no units

Losses
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λmortsp Small phyto. mortality
1

0.15 1/d

λmortdiat Diatom mortality 1 0.15 1/d
λmortdiaz Diazotroph mortality 1 0.16 1/d
αl,pocdiat Fraction of diatom loss

going to POC
0.05 no units

αl,pocdiaz Fraction of diazotroph
loss going to POC

0 no units

flabile Fraction of Labile dis-
solved organic matter
for loss calculations

0.70 no units

λmortzoo Zooplankton linear
mortality

0.08 1/d

λmort2zoo Zooplankton quadratic
mortality

0.42 1/(mmol C m3 d)

βthres0,lzoo Zooplankton threshold
concentrations for mor-
tality

0.03 mmol C/m3

Aggregation

τagg,mindiat Minimum aggregation
rate for diatoms

0.01 1/d

τagg.mindiaz Minimum aggregation
rate for diazotrophs

0.01 1/d

τagg,maxsp Maximum aggregation
rate for small phyto.

0.75 1/d

τagg,maxdiat Maximum aggregation
rate for diatoms

0.75 1/d

τagg,maxdiaz Maximum aggregation
rate for diazotrophs

0.75 1/d

λmort2sp Small phyto. quadratic
mortality

0.0035 1/(mmol C m3 d)

λmort2diat diatom quadratic mor-
tality

0.0035 1/(mmol C m3 d)

λmort2diaz diazotroph quadratic
mortality

0.16 1/(mmol C m3 d)

N cycle rates

τammox NH4 oxidation inverse
timescale

0.06 1/d

τnit NO2 oxidation inverse
timescale

0.33 1/d
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PARnitrif
max Light threshold for on-

set of nitrification
4.0 W / m2

Qdenit
N :C Ratio of inorganic N

consumed to POC rem-
ineralized during deni-
trification

104/106 mmol N / mmol
C

fdenitn2o Fraction of denitrifica-
tion that goes to N2O

0.95 no units

τ consn2o N2O reduction inverse
timescale

0.33333 1/d

abohl0 Parameter used to
calculate sedimentary
denitrification (Bohlen
et al., 2012)

0.06 no units

abohl1 Parameter used to
calculate sedimentary
denitrification (Bohlen
et al., 2012)

0.19 no units

abohl2 Parameter used to
calculate sedimentary
denitrification (Bohlen
et al., 2012)

0.99 no units

Particle cycling
ρpic Organic carbon to inor-

ganic carbon mass ratio
in PIC

0.07 · 100.09
12.01

no units

ρpsi Organic carbon to inor-
ganic Si mass ratio in
PSiO2

0.035 · 60.08
12.01

mmol SiO2 /
mmol C

ρdust Organic carbon to dust
mass ratio in dust

0.07 · 106

12.01
no units

λpoc remin. length scale for
poc, modified by T

130 meters

λpic remin. length scale for
pic

600 meters

λpsi remin. length scale for
psi, modified by T

210 meters

λdust remin. length scale for
dust

600 meters

λnonsol remin. length scale for
non soluble material

40000 meters

Q10,poc Temperature depen-
dency factor for poc
remin. length scale

1.12 no units
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Q10,psi Temperature depen-
dency factor for psi
remin. length scale

4.0 no units

γpic Production fraction
routed to the nonsolu-
ble subclass

0.55 no units

γpsi Production fraction
routed to the nonsolu-
ble subclass

0.37 no units

Φref
poc particulate C flux of

reference
2.0e-3 mmolC/m2/sec

Oxygen
Omin

2 Oxygen minimum
threshold

1.0 mmol O2/m3

5.3 Model equations714

5.3.1 Tracer equations715

Here the symbol d /dt denotes the sum of the local time derivative and the physical transport.716

d

dt
(Nno3) = Jnit − Jdenitno3,no2 − Jdenitsed − (Judiat,no3 + Jusp,no3) (A1)

717

718

d

dt
(Nnh4) = QN :CJ

remin
poc + Jdon,nh4 +QN :C(J ldiat,dic + J lsp,dic

+ J ldiaz,dic) +QN :CJ
l
zoo,dic +QN :C (Jgrzdiat,dic + Jgrzsp,dic + Jgrzdiaz,dic)

− Jammox − (Judiat,nh4 + Jusp,nh4) +QN :C Φremin,sed
poc /∆z

(A2)

719

720

d

dt
(Nno2) = Jammox − Jnit − Jdenitno2,n2o + Jdenitno3,no2 (A3)

721

722

d

dt
(Nn2o) = 0.5Jdenitno2,n2o − Jdenitn2o,n2 + Φair

N2O
/∆z (A4)

723

724

d

dt
(Nn2) = Jdenitn2o,n2 + 0.5Jdenitsed + Φair

N2
/∆z (A5)
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725

726

d

dt
(Fe) = Jdofe,fe − JscavFe + (Qzoo

Fe:C J
l
zoo,dic) + JreminpFe − Judiaz,Fe

+Qsp
Fe:C(J lsp,dic + Jgrzsp,dic) +Qdiat

Fe:C(J ldiat,dic + Jgrzdiat,dic)

+Qdiaz
Fe:C(J ldiaz,dic + Jgrzdiaz,dic) − Jusp,Fe − Judiat,Fe

+ Jgrzsp,zoo(Q
sp
Fe:C −Qzoo

Fe:C) + Jgrzdiat,zoo(Q
diat
Fe:C −Qzoo

Fe:C)

+ Jgrzdiaz,zoo(Q
diaz
Fe:C −Qzoo

Fe:C) + JSedFe

(A6)

727

728

d

dt
(Ppo4) = QP :C(Jreminpoc + J lzoo,dic + J lsp,dic + J ldiat,dic + Jgrzsp,dic + Jgrzdiat,dic)

+ J lossdiaz,dip − (Jusp,P + Judiat,P + Judiaz,P ) + Jdop,po4 +QP :C Φremin,sed
poc /∆z

(A7)

729

730

d

dt
(Sisio2) = QSi:C(0.5 Jgrzdiat + 0.95 J ldiat)

− Judiat,Si + JreminpSi + Φremin,sed
Si /∆z

(A8)

731

732

If (O2 > O2min)733

d

dt
(O2) = (Jphotosp,C + Jphotodiat,C + Jphotodiaz,C)/Rd

C:O + ((−Jreminpoc − Jdoc,dic − J lzoo,dic − J lsp,dic

− Jgrzsp,dic − J ldiat,dic − Jgrzdiat,dic − J ldiaz,dic − Jgrzdiaz,dic)/R
d
C:O)

− 1.5 Jammox − 0.5Jnit − Φremin,sed
poc /(Rd

C:O ∆z) + Φair
O2
/∆z

(A9)

734

If (O2 ≤ O2min)735

d

dt
(O2) = (Jphotosp,C + Jphotodiat,C + Jphotodiaz,C)/Rd

C:O + Φair
O2
/∆z (A10)

736

737

d

dt
(DIC) = Jdoc,dic + 0.33 Jgrzsp QC:caco3

+ J lzoo,dic + J lsp,dic + Jgrzsp,dic + J ldiat,dic + Jgrzdiat,dic − Jphotosp,C − Jphotodiat,C

− Jprodsp,caco3 + Jgrzdiaz,dic + J ldiaz,dic − Jphotodiaz,C + (Jreminpoc + Jreminpic )

+ (Φremin,sed
poc + Φremin,sed

pic )/∆z + Φair
CO2

/∆z

(A11)
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738

739

d

dt
(Alk) = −dNno3

dt
+
dNnh4

dt
+ 2 Jreminpic + 0.33 Jgrzsp QC:caco3 − Jprodsp,caco3

+ 2 Φremin,sed
pic /∆z

(A12)

740

741

d

dt
(Csp) = Jphotosp,C − (Jgrzsp + J lsp + Jaggsp ) (A13)

742

743

d

dt
(Chlsp) = Jpasp,chl −Qsp

Chl:C(Jgrzsp + J lsp + Jaggsp ) (A14)

744

745

d

dt
(Fesp) = gQsp

Fe:CJ
photo
sp,C −Qsp

Fe:C(Jgrzsp + J lsp + Jaggsp ) (A15)

746

747

d

dt
(Casp) = Jprodsp,caco3 −Qsp

caco3:C(Jgrzsp + J lsp + Jaggsp ) (A16)

748

749

d

dt
(Cdiat) = Jphotodiat,C − (Jgrzdiat + J ldiat + Jaggdiat) (A17)

750

751

d

dt
(Fediat) = gQdiat

Fe:CJ
photo
diat,C −Qdiat

Fe:C(Jgrzdiat + J ldiat + Jaggdiat) (A18)

752

753

d

dt
(Chldiat) = Jpadiat,chl −Qdiat

Chl:C(Jgrzdiat + J ldiat + Jaggdiat) (A19)

754

755

d

dt
(Sidiat) = gQSi:CJ

photo
diat,C −Qdiat

Si:C(Jgrzdiat + J ldiat + Jaggdiat) (A20)
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756

757

d

dt
(Cdiaz) = Jphotodiaz,C − (Jgrzdiaz + J ldiaz + Jaggdiaz) (A21)

758

759

d

dt
(Fediaz) = gQdiaz

Fe:CJ
photo
diaz,C −Qdiaz

Fe:C(Jgrzdiaz + J ldiaz + Jaggdiaz) (A22)

760

761

d

dt
(Chldiaz) = Jpadiaz,chl −Qdiaz

Chl:C(Jgrzdiaz + J ldiaz + Jaggdiaz) (A23)

762

763

d

dt
(Czoo) = (Jgrzsp,zoo + Jgrzdiat,zoo + Jgrzdiaz,zoo) − J lzoo (A24)

764

765

d

dt
(Cdoc) = J lsp,doc + J ldiat,doc + J ldiaz,doc + J lzoo,doc

+ (Jgrzsp,doc + Jgrzdiat,doc + Jgrzdiaz,doc) − Jdoc,dic

(A25)

766

767

d

dt
(Ndon) = QN :C (J lsp,doc + J ldiat,doc + J ldiaz,doc + J lzoo,doc

+ Jgrzsp,doc + Jgrzdiat,doc + Jgrzdiaz,doc) − Jdon,nh4 + Jexcretediaz,N

(A26)

768

769

d

dt
(Pdop) = QP :C (J lsp,doc + J ldiat,doc + Jgrzsp,doc + Jgrzdiat,doc + J lzoo,doc)

+ J ldiaz,dop − Jdop,po4

(A27)

770

771

d

dt
(Fedofe) = Qsp

Fe:C (J lsp,doc + Jgrzsp,doc) +Qdiat
Fe:C (J ldiat,doc + Jgrzdiat,doc) +

Qdiaz
Fe:C (J ldiaz,doc + Jgrzdiaz,doc) +Qzoo

Fe:C J
l
zoo,doc − Jdofe,fe

(A28)

772

773
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5.3.2 Treatment of particulate organic matter774

General model775

Particulate organic matter is produced and instantaneously distributed over the depth of the water776

column following the exponential solution to the steady-state 1-dimensional production-remineralization777

equation:778

∂Φ(z)

∂z
= Jremin(z) − Jprod(z) = −Φ(z)

λ
+ Jprod(z), (A29)

where Φ is a flux, λ is the remineralization length-scale, Jprod is the known production rate within779

the layer, and Jremin the remineralization rate within the layer, which needs to be determined. For780

a single layer, assuming the flux at the top of the layer Φ(k) is known, and the production Jprod(k)781

is constant within the layer, the solution to equation A29, can be cast to determine the flux out of782

the layer, Φ(k − 1), for each element i:783

Φi(k − 1) = Φi(k) e
−∆z
λi + Jprod(k) (1 − e

−∆z
λi )λ, (A30)

Particulate organic carbon (POC) is partitioned between a free and mineral associated compo-784

nent:785

Φpoc(z) = Φfree
poc (z) + Φmineral

poc (z) (A31)

Φmineral
poc can be associated with CaCO3, SiO2 or dust. Each mineral-associated POC flux is786

further partitioned into a “soluble” component, which remineralizes with the length-scale of the787

associated mineral, and a “non-soluble” component which remineralizes with a length-scale of788

40,000 m.789

Φmineral
poc (z) = ρpic

(
Φsol
pic(z) + Φnonsol

pic (z)
)

+ρpsi
(
Φsol
psi(z) + Φnonsol

psi (z)
)

+ρdust
(
Φsol
dust(z) + Φnonsol

dust (z)
)

(A32)

For all components of the fluxes except Fe, the flux out of the layer, Φ(k−1), is computed first,790

with knowledge of the source within the layer, Jprod(k), and of the remineralization length-scale.791

Remineralization in the layer is then calculated from conservation, i.e., from A29. Below, for each792

component, we list the equations used to determine the production terms Jprod(k), followed by793

the fluxes out, Φ(k − 1), and finally the remineralization terms, Jremin(z), which enter the tracer794

conservation equations.795

Production796

Jprodpoc =
(
Jgrzsp,poc + Jgrzdiat,poc + Jgrzdiaz,poc

)
+
(
Jaggsp + Jaggdiat

)
+
(
J lsp,poc + J ldiat,poc + J ldiaz,poc

)
+ J lzoo,poc (A33)
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Jprodpic =
(
0.67 Jgrzsp + Jaggsp + J lsp

)
Qsp
caco3:C (A34)

Jprodpsi =
(
0.5 Jgrzdiat + 0.05 J ldiat + Jaggdiat

)
Qdiat
Si:C (A35)

797

Jproddust = 0 (A36)

Available production for free POC is then:798

Jprodpoc,avail = Jprodpoc − ρpicJ
prod
pic − ρpsiJ

prod
psi (A37)

Fluxes out799

Temperature dependency is used to modify the remineralization length scales of particulate organic800

carbon, POC, and opal, SiO2:801

Tpoc = (Q10,poc)
T−30

10 (A38)

802

TPsi = (Q10,psi)
T−30

10 (A39)

Free POC flux equation:803

Φfree
poc (k − 1) = Φ(k)freepoc e

−∆z Tpoc
λpoc + Jprodpoc,avail(k) (1 − e

−∆z Tpoc
λpoc )

λpoc
Tpoc

(A40)

Soluble mineral-associated POC flux equation:804

Φsol
pic(k − 1) = Φ(k)solpic e

− ∆z
λpic + Jprodpic (k) (1 − γpic) (1 − e

− ∆z
λpic )λpic (A41)

Φsol
psi(k − 1) = Φ(k)solpsi e

−
∆z Tpsi
λpsi + Jprodpsi (k) (1 − γpsi) (1 − e

−
∆z Tpsi
λpsi )

λpsi
Tpsi

(A42)

Φsol
dust(k − 1) = Φ(k)soldust e

− ∆z
λdust (A43)

Non-soluble mineral-associated POC flux equation:805

Φnonsol
pic (k − 1) = Φ(k)nonsolpic e

− ∆z
λnonsol + Jprodpic (k) γpic ∆z (A44)

Φnonsol
psi (k − 1) = Φ(k)nonsolpsi e

− ∆z
λnonsol + Jprodpsi (k) γpsi ∆z (A45)

Φnonsol
dust (k − 1) = Φ(k)nonsoldust e

− ∆z
λnonsol (A46)
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Remineralization806

Remineralization is computed from conservation, i.e, A29:807

Jremin = Jprod +
∂Φ(z)

∂z
(A47)

Numerically, for each individual layer, we have:808

Jreminpoc (k) = Jprodpoc (k) +
Φfree
poc (k) − Φfree

poc (k − 1) + Φmineral
poc (k) − Φmineral

poc (k − 1)

∆z
(A48)

809

Jreminpic (k) = Jprodpic (k) +
Φsol
pic(k) − Φsol

pic(k − 1) + Φnonsol
pic (k) − Φnonsol

pic (k − 1)

∆z
(A49)

810

Jreminpsi (k) = Jprodpsi (k) +
Φsol
psi(k) − Φsol

psi(k − 1) + Φnonsol
psi (k) − Φnonsol

psi (k − 1)

∆z
(A50)

811

Jremindust (k) =
Φsol
dust(k) − Φsol

dust(k − 1) + Φnonsol
dust (k) − Φnonsol

dust (k − 1)

∆z
(A51)

Particulate Fe812

Production is as follows:813

Jprodpfe = (Jaggsp + Jgrzsp,poc + J lsp,poc)Q
sp
Fe:C

+ (Jaggdiat + Jgrzdiat,poc + J ldiat,poc)Q
diat
Fe:C

+ (Jaggdiaz + Jgrzdiaz,poc)Q
diaz
Fe:C + 0.1 JscavFe

+ J lzoo f
d
zooQ

zoo
Fe:C

(A52)

Particulate Fe remineralization is assumed to be proportional to POC remineralization plus a814

release from dust :815

Jreminpfe (k) = Jreminpoc (k)
Φsol
pfe(k) + Φnonsol

pfe (k)

Φfree
poc (k) + Φmineral

poc (k)
+ 626.712 Jremindust (k) (A53)

The flux out can then be computed from conservation:816

Φsol
pfe(k − 1) = Φsol

pfe(k) + ∆z

(
Jprodpfe (k) − Jreminpoc (k)

Φsol
pfe(k) + Φnonsol

pfe (k)

Φfree
poc (k) + Φmineral

poc (k)

)
(A54)

Φnonsol
pfe (k − 1) = Φnonsol

pfe (k) (A55)

Bottom flux to sediment817

Φout
poc = Φpoc(kbottom) (A56)
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5.3.3 Biogeochemical rates818

Carbon819

Tfunc = 20.1∗T−3 (A57)

820

Jphotosp,C = PCsp
ref f

sp
nut Tfunc

(
1 − e

−
αchl Q

sp
Chl:C

PAR

PC
sp
ref

f
sp
nut Tfunc

)
Csp (A58)

821

Jphotodiat,C = PCdiat
ref f

diat
nut Tfunc

(
1 − e

− αchl Q
diat
Chl:C PAR

PCdiat
ref

fdiatnut Tfunc

)
Cdiat (A59)

822

Jphotodiaz,C = PCdiaz
ref fdiaznut Tfunc

(
1 − e

− αdiazchl QdiazChl:C PAR

PCdiaz
ref

fdiaznut Tfunc

)
Cdiaz (A60)

Remineralization823

Jdon,nh4 = τdom Ndon (A61)

824

Jdoc,dic = τdomCdoc (A62)

825

Jdop,po4 = τdom Pdop (A63)

826

Jdofe,fe = τdom Fedofe (A64)

827

Φremin,sed
poc =

{
τremin,sed POCsed, if k = kbottom

0 elsewhere
(A65)

828

Φremin,sed
pic =

{
τremin,sedCaCO3sed, if k = kbottom

0 elsewhere
(A66)

829

Φremin,sed
Si =

{
τremin,sed Sised, if k = kbottom

0 elsewhere
(A67)

Nutrient limitation830

f spnut = min(V sp
NO3

+ V sp
NH4

, V sp
Fe, V

sp
PO4

) (A68)

831

fdiatnut = min(V diat
NO3

+ V diat
NH4

, V diat
Fe , V diat

SiO3
, V diat

PO4
) (A69)

832

fdiaznut = min(V diaz
Fe , V diaz

PO4
) (A70)
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833

V sp
NO3

=
NNO3/k

sp
no3

1 +NNO3/k
sp
no3 +NNH4/k

sp
nh4

(A71)

834

V diat
NO3

=
NNO3/k

diat
no3

1 +NNO3/k
diat
no3 +NNH4/k

diat
nh4

(A72)

835

V sp
NH4

=
NNH4/k

sp
nh4

1 +NNO3/k
sp
no3 +NNH4/k

sp
nh4

(A73)

836

V diat
NH4

=
NNH4/k

diat
nh4

1 +NNO3/k
diat
no3 +NNH4/k

diat
nh4

(A74)

837

V sp
Fe =

Fe

Fe+ kspfe
(A75)

838

V diat
Fe =

Fe

Fe+ kdiatfe

(A76)

839

V diaz
Fe =

Fe

Fe+ kdiazfe

(A77)

840

V sp
PO4

=
PO4

PO4 + ksppo4
(A78)

841

V diat
PO4

=
PO4

PO4 + kdiatpo4

(A79)

842

V diaz
PO4

=
PO4

PO4 + kdiazpo4

(A80)

843

V diat
SiO2

=
Sisio3

Sisio2 + kdiatsio2

(A81)

NO3 and NH4 uptake844

Jusp,no3 = QN :C

V sp
NO3

V sp
NO3

+ V sp
NH4

Jphotosp,C (A82)

845

Jusp,nh4 = QN :C

V sp
NH4

V sp
NO3

+ V sp
NH4

Jphotosp,C (A83)

846

Judiat,no3 = QN :C

V diat
NO3

V diat
NO3

+ V diat
NH4

Jphotodiat,C (A84)

847

Judiat,nh4 = QN :C

V diat
NH4

V diat
NO3

+ V diat
NH4

Jphotodiat,C (A85)
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N2 fixation848

Jphotodiaz,N = QN :C J
photo
diaz,C (A86)

849

Jnfixdiaz = Jphotodiaz,N/(1 − αdiazex ) (A87)

850

Jexcretediaz,N = αdiazex Jnfixdiaz (A88)

PO4 uptake851

Jusp,po4 = QP :C J
photo
sp,C (A89)

852

Judiat,po4 = QP :C J
photo
diat,C (A90)

853

Judiaz,po4 = Qdiaz
P :C J

photo
diaz,C (A91)

Chl stoichiometry and production854

Qsp
Chl:C = Chlsp/Csp (A92)

855

Qdiat
Chl:C = Chldiat/Cdiat (A93)

856

Qdiaz
Chl:C = Chldiaz/Cdiaz (A94)

Jpasp,chl = Qsp,growth
N :chl,max

Jphotosp,C /Csp

αchlQ
sp
Chl:C PAR

QN :C J
photo
sp,C (A95)

Jpadiat,chl = Qdiat,growth
N :chl,max

Jphotodiat,C/Cdiat

αchlQdiat
Chl:C PAR

QN :c J
photo
diat,C (A96)

Jpadiaz,chl = Qdiaz,growth
N :chl,max

Jphotodiaz,C/Cdiaz

αchlQdiaz
Chl:C PAR

QN :c J
photo
diaz,C (A97)

Light857

PARB(z) = max(0, fIsw ISW ) e
∫ 0
z (µchl(Chlsp+Chldiat+Chldiaz)+µw) dz (A98)

858

PAR =
1

µchl(Chlsp + Chldiat + Chldiaz) + µw)

∂PARB

∂z
(z) (A99)
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Fe stoichiometry and cycling859

Qsp
Fe:C = Fesp/Csp (A100)

860

Qdiat
Fe:C = Fediat/Cdiat (A101)

861

Qdiaz
Fe:C = Fediaz/Cdiaz (A102)

862

QZoo
Fe:C = 2.5e−6 (A103)

863

gQsp
Fe:C =

{
Qsp,g0
Fe:C , if Fe ≥ 2 kspfe

max(Qsp,g1
Fe:C ,

Qsp,g0Fe:C Fe

2 kspfe
), otherwise

(A104)

864

gQdiat
Fe:C =

Q
diat,g0
Fe:C , if Fe ≥ 2 kdiatfe

max(Qdiat,g1
Fe:C ,

Qsp,g0Fe:C Fe

2 kdiatfe
), otherwise

(A105)

865

gQdiaz
Fe:C =

Q
diaz,g0
Fe:C , if Fe ≥ 2 kdiazfe

max(Qdiaz,g1
Fe:C ,

Qdiaz,g0Fe:C Fe

2 kdiazfe
), otherwise

(A106)

Jusp,Fe = gQsp
Fe:C J

photo
sp,C (A107)

866

Judiat,Fe = gQdiat
Fe:C J

photo
diat,C (A108)

867

Judiaz,Fe = gQdiaz
Fe:C J

photo
diaz,C (A109)

JscavFe =


( Jscav,0Fe min((Φpoc + 8.33 · 104 Φdust)/Φ

ref
poc , β

max,scale1
fe )

+(Fe− βthresh,1fe ) 6.0/1.4e−3) 3.1709792e−8 Fe, ifFe > βthresh,1fe

( Jscav,0Fe min((Φpoc + 8.33 · 104 Φdust)/Φ
ref
poc , β

max,scale1
fe )

+ Fe

βthresh,2fe

) ) 3.1709792e−8 Fe, ifFe < βthresh,2fe

(A110)

JSedFe =


0.75 . 10(2.5−0.0165O2) (0.001/86400)/∆z, if k = kbottom andO2 > Omin

2

0.25 . 10(2.5−0.0165O2) (0.001/86400)/∆z, if k = kbottom−1 andO2 > Omin
2

10(2.5−0.0165O2) (0.001/86400)/∆z elsewhere
(A111)

75% of JSedFe is released in the bottom layer and 25 % in the layer above.868
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CaCO3 stoichiometry production869

Qsp
caco3:C =

{
CaCO3 sp/Csp if CaCO3 sp/Csp ≤ Qsp,max

caco3:C

Qsp,max
caco3:C otherwise

(A112)

Jprod,maxsp,caco3 = fprodcaco3 J
photo
sp,C f spnut (A113)

JprodTsp,caco3 =

{
Jprodmaxsp,caco3 if T ≥ T caco31

Jprodmaxsp,caco3
max[T−T caco32 , 0]

T caco31 −T caco32
if T < T caco31

(A114)

Jprodsp,caco3 =

{
min[(JprodTsp,caco3Csp/3, 0.4Jphotosp,C ] where Csp > 3.0

Jprod,Tsp,caco3 elsewhere
(A115)

Si stoichiometry870

Qdiat
Si:C = max(Sidiat/Cdiat, Q

diat,max
Si:C ) (A116)

gQdiat
Si:C =


min(Qdiat,g0

Si:C (2Qdiat,g1
Si:C kdiatfe /Fe

−Qdiat,g1
Si:C + 1), Qdiat,max

Si:C ), if 0 < Fe < 2 kdiatfe and Sisio2 > 2kdiatsio2

Qdiat,max
Si:C if Fe = 0

Qdiat,g0
Si:C otherwise

(A117)

Judiat,Si = gQdiat
Si:C J

photo
diat,C (A118)

Grazing871

βgrz,spthres =


βgrz,spthres,0 z ≥ -100m
βgrz,spthres,0 · (200 + z)/100 -100 m > z > -200 m
0 z ≤ -200 m

(A119)

P ′sp = max(Csp − βgrz,spthres , 0) (A120)

872

βgrz,diatthres =


βgrz,diatthres,0 z ≥ -100m
βgrz,diatthres,0 · (200 + z)/100 -100 m > z > -200 m
0 z ≤ -200 m

(A121)

P ′diat = max(Cdiat − βgrz,diatthres , 0) (A122)

βgrz,diazthres =


βgrz,diazthres,0 z ≥ -100m
βgrz,diazthres,0 · (200 + z)/100 -100 m > z > -200 m
0 z ≤ -200 m

(A123)
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P ′diaz = max(Cdiaz − βgrz,diazthres , 0) (A124)

Jgrzsp = Jg,maxsp Tfunc
P ′2sp

P ′2sp + (βgrzz )2
Czoo (A125)

Jgrzdiat = Jg,maxdiat Tfunc
P ′2diat

P ′2diat + 0.81(βgrzz )2
Czoo (A126)

Jgrzdiaz = Jg,maxdiaz Tfunc
P ′2diaz

P ′2diaz + (βgrzz )2
Czoo (A127)

Jg,zoosp = αgrz,zoosp Jgrzsp (A128)

873

Jg,zoodiat = αgrz,zoodiat Jgrzdiat (A129)

874

Jg,zoodiaz = αgrz,zoodiaz Jgrzdiaz (A130)

Jg,pocsp = max(Qsp,max
caco3:C Q

sp
caco3:C ,min(0.18P ′sp, α

grz,poc
sp )) Jgrzsp (A131)

875

Jg,pocdiat = αgrz,pocdiat Jgrzdiat (A132)

876

Jg,pocdiaz = αgrz,pocdiaz Jgrzdiaz (A133)

Jg,docsp = αgrz,docsp Jgrzsp − Jgrz,pocsp (A134)

877

Jg,docdiat = αgrz,docdiat Jgrzdiat (A135)

878

Jg,docdiaz = αgrz,docdiaz Jgrzdiaz (A136)

Jg,dicsp = αgrz,dicsp Jgrzsp (A137)

879

Jg,dicdiat = αgrz,dicdiat Jgrzdiat (A138)

880

Jg,dicdiaz = αgrz,dicdiaz Jgrzdiaz (A139)
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Losses881

J lsp = λmortsp P ′sp (A140)

882

J ldiat = λmortdiat P
′
diat (A141)

883

J ldiaz = λmortdiaz P
′
diaz (A142)

J l,pocsp = Qsp
caco3:C J

l
sp (A143)

884

J l,pocdiat = αl,pocdiat J
l
diat (A144)

885

J l,pocdiaz = αl,pocdiaz J
l
diaz (A145)

J l,docsp = (1 − flabile)(J
l
sp − J l,pocsp ) (A146)

886

J l,docdiat = (1 − flabile)(J
l
diat − J l,pocdiat ) (A147)

887

J l,docdiaz = (1 − flabile)(J
l
diaz − J l,pocdiaz ) (A148)

J l,dicsp = flabile(J
l
sp − J l,pocsp ) (A149)

888

J l,dicdiat = flabile(J
l
diat − J l,pocdiat ) (A150)

889

J l,dicdiaz = flabile(J
l
diaz − J l,pocdiaz ) (A151)

P remain
diaz = Qdiaz

P :C (Jgrzdiaz + J ldiaz + Jaggdiaz) −QP :C (Jgrzdiaz,poc + Jgrzdiaz,zoo) (A152)

890

J ldiaz,dop = (1 − flabile)P
remain
diaz (A153)

891

J ldiaz,dip = flabile P
remain
diaz (A154)

βthres,lzoo =


βthres0,lzoo z ≥ -100m
βthres0,lzoo · (200 + z)/100 -100 m > z > -200 m
0 z ≤ -200 m

(A155)

Z ′zoo = max(Czoo − βthres,lzoo , 0) (A156)
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J lzoo = λmort2zoo Tfunc Z
′2
zoo + λmortzoo Tfunc Z

′
zoo (A157)

fdzoo =
0.1333 Jgrzdiat + 0.0333 Jgrzsp

Jgrzdiat + Jgrzsp + Jgrzdiaz

(A158)

J lzoo,doc = (1 − flabile) (1 − fdzoo) J
l
zoo (A159)

892

J lzoo,dic = flabile (1 − fdzoo) J
l
zoo (A160)

893

J lzoo,poc = fdzoo J
l
zoo (A161)

Aggregation894

Jaggsp = min(τagg,maxsp P ′sp, λ
mort2
sp P ′2sp) (A162)

895

Jaggdiat = max(τagg,mindiat P ′diat,min(τagg,maxdiat P ′diat, λ
mort2
diat P ′2diat)) (A163)

896

Jaggdiaz = 0.0 (A164)

N -cycle rates897

Jammox =

{
τammoxNnh4, where PARB(k) < PARnitrif

max

0, elsewhere
(A165)

Jnit =

{
τnitNno2, where PARB(k) < PARnitrif

max andO2 > Omin
2

0, elsewhere
(A166)

J conso2 = (Jreminpoc + Jdoc,dic + J lzoo,dic + J lsp,dic

+ Jgrzsp,dic + J ldiat,dic + Jgrzdiat,dic

+ J ldiaz,dic + Jgrzdiaz,dic + Jpocremin)/QC:O

+ 1.5 Jammox + 0.5 Jnit

(A167)

Jdenitno3,no2 =

{
Qdenit
N :C J

remin
poc , whereO2 ≤ Omin

2

0, elsewhere
(A168)

Jdenitno2,n2o =

{
fdenitn2o Jdenitno3,no2, whereO2 ≤ Omin

2

0, elsewhere
(A169)

898

Jdenitn2o,n2 =

{
τ consn2o Nn2o, whereO2 ≤ Omin

2

0, elsewhere
(A170)
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899

Jdenitsed =

{
(abohl0 + abohl1 (abohl2 )O2−Nno3)

Φoutpoc

∆z
, where z = zbottom

0, elsewhere
(A171)

Air-sea fluxes900

SCO2 = 1638.0 + Tsurf (−81.83 + Tsurf (−0.008004(1.483 + Tsurf ))) (A172)

901

SCCO2 = 2073.1 + Tsurf (−125.62 + Tsurf (−0.043219(3.6276 + Tsurf ))) (A173)

902

PVO2 = 8.6 · 10−7Ws2

√
660

ScO2

(A174)

903

PVCO2 = 8.6 · 10−7Ws2

√
660

ScCO2

(A175)

904

Φair
O2

= PVO2(O2sat −O2) (A176)

O2sat is the oxygen saturation concentration computed from Garcia and Gordon (1992), page 1310,905

eq. 8.906

Φair
N2O

= −PVO2N2O (A177)

907

Φair
N2

= −PVO2N2 (A178)

908

Φair
CO2

= PVCO2(CO∗2air − CO∗2) (A179)

with CO∗2air and CO∗2 the concentrations corresponding to the partial pressure in air and water909

computed from Dickson and Goyet (1994) (SOP No. 3, p25-26).910

Concentration in sediment911

POCsed = Φout
poc − Jremin,sedpoc (A180)

912

CaCO3sed = Φout
pic − Jremin,sedpic (A181)

913

Sised = Φout
Si − Jremin,sedSi (A182)
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